Formation of an elongated region of energy backflow using ring apertures
Stafeev S.S., Kotlyar V.V.

 

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

Abstract:
In this paper, we have investigated the focusing of a second-order cylindrical vector beam by using a high numerical aperture (NA) lens limited by a ring aperture using the Richards-Wolf formulae. It was shown that the range of negative on-axis projections of the Poynting vector could be increased by increasing the depth of focus through the use of a ring aperture. It was shown that when focusing light with a lens with NA = 0.95, the use of a ring aperture limiting the entrance pupil angle to 0.9 of maximum, allows the depth of the region of negative on-axis Poynting vector projections to be four times increased, with the region width remaining almost unchanged and varying from 0.357 to 0.352 of the incident wavelength. Notably, the magnitude of the reverse energy flow was found to be larger than the direct one by a factor of 2.5.

Keywords:
Richards-Wolf formulae, energy backflow, tight focusing, cylindrical vector beam, ring aperture.

Citation:
Stafeev SS, Kotlyar VV. Formation of an elongated region of energy backflow using ring apertures. Computer Optics 2019; 43(2): 193-199. DOI: 10.18287/2412-6179-2019-43-2-193-199.

References:

  1. Grosjean T, Gauthier I. Longitudinally polarized electric and magnetic optical nano-needles of ultra high lengths. Opt Commun 2013; 294: 333-337.
  2. Wu Z, Zhang K, Zhang S, Jin Q, Wen Z, Wang L, Dai L, Zhang Z, Chen H, Liang G, Liu Y, Chen G. Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams. Opt Express 2018; 26(13): 16585-16599.
  3. Guan J, Lin J, Chen C, Ma Y, Tan J, Jin P. Transversely polarized sub-diffraction optical needle with ultra-long depth of focus. Opt Commun 2018; 404: 118-123.
  4. Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C, Hong M. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci Rep 2015; 5: 09977.
  5. Wang H, Shi L, Luk`yanchuk B, Sheppard C, Chong CT. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat Photon 2008; 2: 501-505.
  6. Yu Y, Huang H, Zhou M, Zhan Q. Engineering of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps. Opt Commun 2018; 407: 398-401.
  7. Zheng C, Su S, Zang H, Ji Z, Tian Y, Chen S, Mu K, Wei L, Fan Q, Wang C, Zhu X, Xie C, Cao L, Liang E. Characterization of the focusing performance of axial line-focused spiral zone plates. Appl Opt 2018; 57: 3802-3807.
  8. Chen Z, Zhao D. 4Pi focusing of spatially modulated radially polarized vortex beams. Opt Lett 2012; 37: 1286-1288.
  9. Lin J, Chen R, Jin P, Cada M, Ma Y. Generation of longitudinally polarized optical chain by 4π focusing system. Opt Commun 2015; 340: 69-73.
  10. Yu Y, Zhan Q. Generation of uniform three-dimensional optical chain with controllable characteristics. J Opt 2015; 17: 105606.
  11. Guo H, Weng X, Dong X, Sui G, Gao X, Zhuang S. Three dimensional optical cage formed by TEM01 mode radially polarized Laguerre-Gaussian beam. J Opt 2011; 40(4): 206-212.
  12. Volyar AV, Fadeeva TA. Focusing of singular beams. Opt Spectrosc 2004; 96(1): 96-105.
  13. Ushakova K, van den Berg QY, Pereira SF, Urbach HP. Demonstration of spot size reduction by focussing amplitude modulated radially polarized light on a photoresist. J Opt 2015; 17: 125615.
  14. Khonina SN, Ustinov AV. Analysis of interference of radially polarized laser beams generated by ring optical elements with a vortex phase at sharp focusing. Computer Optics 2015; 39(1): 12-25. DOI: 10.18287/0134-2452-2015-39-1-12-25.
  15. Udhayakumar M, Prabakaran K, Rajesh KB, Jaroszewicz Z, Belafhal A, Velauthapillai D. Generation of ultra-long pure magnetiza-tion needle and multiple spots by phase modulated doughnut Gaussian beam. Opt Laser Technol 2018; 102: 40-46.
  16. Udhayakumar M, Prabakaran K, Rajesh KB, Jaroszewicz Z, Belafhal A. Generating sub wavelength pure longitudinal magnetization probe and chain using complex phase plate. Opt Commun 2018; 407: 275-279.
  17. Nie Z, Shi G, Zhang X, Wang Y, Song Y. Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam. Opt Commun 2014; 331: 87-93.
  18. Guan J, Lin J, Chen C, Ma Y, Tan J, Jin P. Transversely polarized sub-diffraction optical needle with ultra-long depth of focus. Opt Commun 2017; 404: 118-123.
  19. Rajesh KB, Suresh NV, Anbarasan PM, Gokulakrishnan K, Mahadevan G. Tight focusing of double ring shaped radially polarized beam with high NA lens axicon. Opt Laser Technol 2011; 43: 1037-1040.
  20. Suresh P, Mariyal C, Rajesh KB, Pillai TVS, Jaroszewicz Z. Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask. Appl Opt 2013; 52: 849-853.
  21. Kotlyar VV, Nalimov AG, Stafeev SS. Energy backflow in the focus of an optical vortex. Laser Phys 2018; 28(12): 126203. DOI: 10.1088/1555-6611/aae02f.
  22. Stafeev SS, Nalimov AG, Kotlyar VV. Energy backflow in a focal spot of the cylindrical vector beam. Computer Optics 2018; 42(5): 744-750. DOI: 10.18287/2412-6179-2018-42-5-744-750.
  23. Sugic D, Dennis MR, Singular knot bundle in light. J Opt Soc Am A 2018; 35(12): 1987-1999.
  24. Maucher F, Skupin S, Gardiner SA, Hughes IG. Creating complex optical longitudinal polarization structures. Phys Rev Lett 2018; 120(16): 163903.
  25. Larocque H, Sugic D, Mortimer D, Taylor AJ, Fickler R, Boyd RW, Dennis MR, Karimi E. Reconstructing the topology of optical polarization knots. Nat Phys 2018; 14: 1079-1982.
  26. Vasnetsov MV, Gorshkov VN, Marienko IG, Soskin MS, Wavefront motion in the vicinity of a phase dislocation: optical vortex. Opt Spectrosc 2000; 88(2): 260-265.
  27. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1959; 253(1274): 358-379.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20