The influence of additional phase modulation of an amplitude liquid crystal STLM on the image recognition characteristics in the invariant optical digital correlator
Goncharov D.S., Evtikhiev N.N., Krasnov V.V., Ponomarev N.M., Starikov R.S.


National Research Nuclear University “MEPhI”, Moscow, Russia

We present the results of measurements of additional phase modulation characteristics of a serial amplitude liquid crystal spatial light modulator HoloEye LC 2002. It is found in which way the phase shift of the liquid crystal spatial light modulator depends on the applied signal. The mathematical simulation of the performance of an invariant diffractive optical-digital correlator based on a liquid crystal spatial light modulator with the amplitude-dependent phase shift is carried out using previously measured data. The correlation filters used in the work are an optimal tradeoff maximum average correlation height filter and a minimum noise and correlation energy optical correlation filter. A method for correlation filters optimization was proposed to compensate for the recognition error caused by the presence of the additional phase modulation. In some cases, the optimization allows one not only to compensate for the recognition error, but also to reduce it.

optical-digital correlator, LC SLM, interference, invariant correlation filter.

Goncharov DS, Evtikhiev NN, Krasnov VV, Ponomarev NM, Starikov RS. The influence of additional phase modulation of an amplitude liquid crystal STLM on the image recognition characteristics in the invariant optical digital correlator. Computer optics 2019; 43(2): 200-208. DOI: 10.18287/2412-6179-2019-43-2-200-208.


  1. Lugt AV. Signal detection by complex spatial filtering. IEEE Transactions on Information Theory 1964; 10: 139.
  2. Vijaya Kumar BVK, Mahalanobis A, Juday RD. Correlation Pattern Recognition. Cambridge: Cambridge University Press; 2005.
  3. Vijaya Kumar BVK, Fernandez JA, Rodriguez A, Boddeti VN. Recent advances in correlation filter theory and application. Optical Pattern Recognition XXV 2014; 9094: 909404.
  4. Ravichandran G, Casasent D. Minimum noise and correlation energy optical correlation filter. Appl Opt 1992; 31(11): 1823-1833.
  5. Vijaya Kumar BVK, Carlson D, Mahalanobis A. Optimal trade-off synthetic discriminant function filters for arbitrary devices. Opt Lett 1994; 19: 1556.
  6. Johnson OC, Edens W, Lu T, Chao T-H. Optimization of OT-MACH filter generation for target recognition. Proc SPIE 2009; 7340: 734008.
  7. Evtikhiev NN, Ivanov PA, Lyapin AS, Reyzin BM, Shevchuk AV, Sirotkin SI, Starikov RS, Zaharcev AV. Synthesis and research of LPCC invariant correlation filters for pattern recognition. Proc SPIE 2005; 5851: 242-245.
  8. Lin TH, Lu T, Braun H, Edens WK, Zhang Yu, Chao T-H, Assad C, Huntsberger TL. Optimization of a multi-stage ATR system for small target identification. Proc SPIE 2010; 7696: 76961Y.
  9. Evtikhiev NN, Shaulskiy DV, Zlokazov EYu, Starikov RS. Variants of minimum correlation energy filters: comparative study. Proc SPIE 2012; 8398: 83980G.
  10. Fernandez JA, Boddeti VN, Rodriguez A, Vijaya Kumar BVK. Zero-aliasing correlation filters for object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2015; 37(8).
  11. Gardezi A, Qureshi T, Alkandri A, Young RCD, Birch PM, Chatwin CR. Comparison of spatial domain optimal tradeoff maximum average correlation height (OT-MACH) filter with scale invariant feature transform (SIFT) using images with poor contrast and large illumination gradient. Proc SPIE 2015; 9477: 947706.
  12. Tehsin S, Rehman S, Awan AB, Chaudry Q, Abbas M, Young R, Asif A. Improved maximum average correlation height filter with adaptive log base selection for object recognition. Proc SPIE 2016; 9845: 984506.
  13. He EJ, Fernandez JA, Vijaya Kumar BVK, Alkanhal M. Masked correlation filters for partially occluded face recognition. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing 2016; 1293-1297.
  14. Smereka JM, Boddeti VN, Vijaya Kumar BVK. Stacked Correlation Filters. In Book: Vatsa M, Singh R, Majumdar A, eds. Deep Learning in Biometrics. Ch 8. Boca Raton: CRC Press; 2018.
  15. Dallas WJ. Computer-generated holograms. In Book: Friede BR, ed. The computer in optical research: Methods and applications. Berlin: Springer, 1980: 297-367.
  16. Evtikhiev NN, Starikov SN, Zlokazov EYu, Sirotkin SI, Starikov RS. Realisation of invariant holographic filters with the linear phase coefficient in a Van der Lugt correlator. Quantum Electronics 2008; 38(2): 191-193.
  17. Evtikhiev NN, Starikov SN, Sirotkin SI, Starikov RS, Zlokazov EYu. LPCC invariant correlation filters: Realization in 4-f holographic correlator. Proc SPIE 2008; 6977: 69770C.
  18. Evtikhiev NN, Starikov SN, Shaulskiy DV, Starikov RS, Zlokazov EYu. Invariant correlation filter with linear phase coefficient holographic realization in 4-F correlator. Opt Engineer 2011; 50(6): 065803.
  19. Evtikhiev NN, Shaulskiy DV, Zlokazov EYu, Starikov RS. MINACE filter realization as computer generated hologram for 4-f correlator. Proc SPIE 2013; 8748: 87480O.
  20. Shaulskiy DV, Evtikhiev NN, Starikov RS, Starikov SN, Zlokazov EYu. EMINACE filter: Variants of realization in 4-f correlator. Proceedings of SPIE 2014; 9094: 90940K.
  21. Shaulskiy DV, Evtikhiev NN, Zlokazov EYu, Starikov SN, Starikov RS. Variants of light modulation for MINACE filter implementation in 4-F correlators. Proc SPIE 2015; 9598: 95980T.
  22. Chao T-H, Lu T. Grayscale optical correlator for CAD/CAC applications. Proc SPIE 2008; 6977: 697704.
  23. Manzur T, Zeller J, Serati S. Optical correlator based target detection, recognition, classification, and tracking. Appl Opt 2012; 51: 4976.
  24. Evtikhiev NN, Starikov SN, Protsenko ED, Zlokazov EYu, Solyakin IV, Starikov RS, Shapkarina EA, Shaulskiy DV. Model of an invariant correlator with liquid-crystal spatial light modulators. Quantum Electronics 2012; 42(11): 1039-1041.
  25. Chao T-H, Lu T. High-speed optical correlator with custom electronics interface design. Proc SPIE 2013; 8748: 874803.
  26. Chao T-H, Lu T, Walker BP, Reyes GF. High-speed optical processing using digital micromirror device. Proc SPIE 2014; 9094: 909402.
  27. Xu P, Hong C, Cheng G, Zhou L, Sun Z. Planar optical correlators integrated with binary optical lens. Opt Express 2015; 23: 6773-6779.
  28. Monjur MS, Tseng S, Fouda MF, Shahriar SM. Experimental demonstration of the hybrid opto-electronic correlator for target recognition. Appl Opt 2017; 56: 2754-2759.
  29. Ikeda K, Suzuki H, Watanabe E. Optical correlation-based cross-domain image retrieval system. Opt Lett 2017; 42: 2603.
  30. Jridi M, Napoléon T, Alfalou A. One lens optical correlation: Application to face recognition. Appl Opt 2018; 57: 2087.
  31. Bondareva AP, Cheremkhin PA, Evtikhiev NN, Krasnov VV, Starikov RS, Starikov SN. Measurement of characteristics and phase modulation accuracy increase of LC SLM" HoloEye PLUTO VIS". J Physics: Conf Ser 2014; 536(1): 012011.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20