Efficiency of object identification for binary images
Magdeev R., Tashlinskii Al.

Ulyanovsk State Technical University, Russia, Ulyanovsk,
Telekom.ru LLC, Russia, Ulyanovski

Abstract:
In this paper, a comparative analysis of the correlation-extreme method, the method of contour analysis and the method of stochastic gradient identification in the objects identification for a binary image is carried out. The results are obtained for a situation where possible deformations of an identified object with respect to a pattern can be reduced to a similarity model, that is, the pattern and the object may differ in scale, orientation angle, shift along the base axes, and additive noise. The identification of an object is understood as the recognition of its image with an estimate of the strain parameters relative to the template.

Keywords:
digital image, object recognition, pattern recognition, correlation-extreme algorithm, stochastic gradient identification, incorrect identification probability.

Citation:
Magdeev RG, Tashlinskii AG. Efficiency of object identification for binary images. Computer Optics 2019; 43(2): 277-281. DOI: 10.18287/2412-6179-2019-43-2-277-281.

References:

  1. Poltavskii AV, Grinshkun AV. Basics of pattern recognition using computer [In Russian]. Dvoinie Tehnologii 2017; 2: 55-66.
  2. Knyaz VA, Vishnyakov BV, Vizilter YV, Gorbancevich VS, Vigolov OV. Intelligent information processing technologies for navigation and control problems of unmanned aerial vehicles [In Russian]. Trudi SPIIRAN 2016; 45: 26-44. DOI: 10.15622/sp.45.2.
  3. Kuznetsov AV, Myasnikov VV. A copy-move detection algorithm based on binary gradient contours. Computer Optics 2016; 40(2): 284-293. DOI: 10.18287/2412-6179-2016-40-2-284-293.
  4. Magdeev RG, Tashlinskii AG. A comparative analysis of the efficiency of the stochastic gradient approach to the identification of objects in binary images. Pattern Recognition and Image Analysis 2014; 24(4): 535-541. DOI: 10.1134/S1054661814040130.
  5. Prett W. Digital image processing: in 2 volumes. New York: John Wiley and Sons; 1978.
  6. Gruzman IS, Kirichuk VS, Kosih VP, Peretyagin GI, Spektor AA. Digital image processing in information systems [In Russian]. Novosibirsk: NGTU Publisher; 2002.
  7. Furman YaA, Krevetsky AV, Peredeyev AK, Rozhentsov AA, Khafizov RG, Egoshina IL, Leukhin AL. Introduction to contour analysis and its applications to image and signal processing [In Russian]. Moscow: “Fizmatlit” Publisher; 2003.
  8. Tsypkin YaZ. Information theory of identification [In Russian]. Moscow: “Fizmatlit” Publisher; 1995.
  9. Tashlinskii AG. Computational expenditure reduction in pseudo-gradient image parameter estimation. International Conference on Computational Science 2003; 2658: 456-462.
  10. Gonzalez R, Woods R. Digital image processing. Upper Saddle River, New Jersey: Prentice Hall; 2012.
  11. Canny JA. Computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986; PAMI-8(6): 679-698.
  12. Duda RO, Hart PE, Stork DG. Pattern classification. New York: Wiley-Interscience; 2001.
  13. Tashlinskii AG. Pseudogradient estimation of digital images interframe geometrical deformations. In Book: Obinata G, Dutta A, eds. Vision systems: Segmentation and pattern recognition. InTech; 2007: 465-494. DOI: 10.5772/4975.
  14. Tashlinskii AG. The specifics of pseudogradient estimation of geometric deformations in image sequences. Pattern Recognition and Image Analysis 2008; 18(4): 700-705. DOI: 10.1134/S1054661808040275.
  15. Tashlinskii AG. Estimation of the parameters of spatial deformations of image sequences [In Russian]. Ulyanovsk: UlSTU Publisher; 2000.
  16. Fadeeva GL. Optimization of the pseudo-gradient of the objective function in the estimation of inter-frame geometric deformations of images [In Russian]. The thesis for the Candidate’s degree in Technical Sciences. Ulyanovsk; 2007.
  17. Sebryakov GG, Soshnikov VN, Kikin IS, Ishutin AA. Optimization of parameters of partitioning the analyzed fragment of the image of the scene according to the quality criteria and computational efficiency of recognition of the observed objects [In Russian]. In Book: Technical vision in control systems: materials of scientific and technical conference. Moscow: SAKVOEE Space Research Institute of the Russian Academy of Sciences; 2014: 149-151.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20