(43-5) 13 * << * >> * Russian * English * Content * All Issues

Investigation of optical glass characteristics under the influence of space factors

М.P. Kalaev1, А.М. Telegin1, K.E. Voronov1, Jiang Lixiang2, Jiao Jilong2

Samara National Research University,
443086, Russia, Samara, Moskovskoye shosse 34,  
Beijing Institute of Spacecraft Environment Engineering, China, Beijing

 PDF, 1671 kB

DOI: 10.18287/2412-6179-2019-43-5-803-809

Pages: 803-809.

Full text of article: Russian language.

Abstract:
The paper describes a DF-OPTICS device that the present authors designed for the experimental study of changes in the optical properties of a glass whose surface is exposed to  high-speed flows of micron-sized dust particles. The device allows the scattering indicatrix and the spectral transmittance to be automatically measured at each point of the sample with a 0.5-mm increment. Advantages of the developed device include small dimensions and the ability to work in vacuum, allowing it to be used in an accelerator chamber to simulate outer space factors. Experimental results for the K-8 glass put in a microparticle accelerator and bombarded by an aluminum powder PAP-1 with a characteristic size of 1-3 µm and speeds of 2-8 km / s are presented. The device makes it possible to measure the change of the spectral transmittance of transparent materials in the UV and RGB regions with an accuracy of 0.005%, which exceeds the sensitivity of some known spectrophotometers.

Keywords:
spectral transmittance, scattering indicatrix, micrometeorite.

Citation:
Kalaev MP, Telegin AM, Voronov KE, Lixiang J, Jilong J. Investigation of optical glass characteristics under the influence of space factors. Computer Optics 2019; 43(5): 803-809. DOI: 10.18287/2412-6179-2019-43-5-803-809.

Acknowledgements:
The work was carried out under the international contract between Samara University and Beijing Institute of Spacecraft Environment Engineering.

References:

  1. Lai ST, Murad E. Hazard of hypervelocity impacts on spacecraft. Journal of Spacecraft and Rockets 2002; 39(1): 106-114. DOI: 10.2514/2.3788.
  2. Drolshagen G. Impact effects from small size meteoroids and space debris. Advances in Space Research 2008; 41: 1123-1131. DOI: 10.1016/j.asr.2007.09.007.
  3. Semkin ND, Kalaev MP. Degradation of optical glass under exposure to micrometeoroids and space debris. Instruments and Experimental Techniques 2011; 54(1): 126-130. DOI: 10.1134/S0020441211010180.
  4. Novikov LS, Baranov DG, Gagarin YF, Dergachev VA, Samokhina MS, Voronina EN. Measurements of microparticle fluxes on orbital space stations from 1978 until 2011. Advances in Space Research 2017; 59(12): 3003-3010. DOI: 10.1016/j.asr.2017.03.020.
  5. Piyakov AV, Rodin DV, Rodina MA, Telegin AM, Kondratev SN. Simulation of the control system of the electrodynamic accelerator of dust particles. CEUR Workshop Proceedings 2018; 2212: 158-164.
  6. Nazarenko AI. Modeling of space debris [In Russian]. Moscow: IKI RAN Publisher; 2013. ISBN: 978-5-9903101-6-2.
  7. Semkin ND, Kalaev MP, Voronov KE. Determination of parameters of craters on a glass surface by the small-angle-indicatrix method. Instruments and Experimental Techniques 2011; 54(3): 425-429. DOI: 10.1134/S002044121103016X.
  8. Nadiradze AB, Kalaev MP, Semkin ND. Meteoroid and technogenic particle impact on spacecraft solar panels. Cosmic Research 2016; 54(5): 366-374. DOI: 10.1134/S001095251605004X.
  9. Kalaev M.P., Semkin N.D., Novikov L.S. Space debris and micrometeoroid impact on spacecraft elements: Experimental simulation. Inorganic Materials: Applied Research 2013; 4(3):. 205-210. DOI: 10.1134/S2075113313030052.
  10. Kalaev MP, Ryazanov DM. Device for measuring the spatial density of micrometeoroids and debris particles [In Russian], Pat RF of Invent N 2658072 of June 19, 2018, Russian Bull of Inventions N17, 2018.
  11. Drake RM, Gordon JE. Mie scattering. American Journal of Physics 1985; 53(10): 955-962. DOI: 10.1119/1.14011.
  12. Weiner I, Rust M, Donnelly TD. Particle size determination: An undergraduate lab in Mie scattering. American Journal of Physics 2001; 69(2): 129-136. DOI: 10.1119/1.1311785.
  13. Cox AJ, DeWeerd AJ, Linden J. An experiment to measure Mie and Rayleigh total scattering cross sections. American Journal of Physics 2002; 70(5): 620-625. DOI: 10.1119/1.1466815.
  14. Wang M, Cao M, Guo ZR, Gu N. Generalized multiparticle Mie modeling of light scattering by cells. Chinese Science Bulletin 2013; 58(21): 2663-2666. DOI: 10.1007/s11434-013-5719-0.

 


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20