(44-2) 04 * << * >> * Russian * English * Content * All Issues

Correction of chromatism of dual-infrared zoom lenses

G.I. Greisukh 1, E.G. Ezhov 1, A.I. Antonov  1

Penza State University of Architecture and Construction, Penza, Russia

 PDF, 772 kB

DOI: 10.18287/2412-6179-CO-623

Pages: 177-182.

Full text of article: Russian language.

Abstract:
Using the example of a simple-by-design mid-wave and long-wave dual-band infrared zoom lens consisting of three two-lens components made of silicone and germanium, the possibility of reducing chromatic and monochromatic aberrations to a level that ensures sufficiently high quality of the formed image is demonstrated at spatial frequencies of up to 25 inverse millime-ters. As one of the possible ways to modify the zoom lens, it is proposed to place a two-layer two-relief diffractive microstructure on the flat surface of the refractive lens closest to the aperture stop. The efficiency of the transition to the refractive-diffraction scheme is confirmed by the results of calculation and optimization of a zoom lens, the two-lens components of which are made of silicone and amorphous glass of the IRG26 brand..

Keywords:
dual-infrared range, chromatism, two-lens component, refractive and refractive-diffractive zoom lens.

Citation:
Greisukh GI, Ezhov EG, Antonov AI. Correction of chromatism of dual-infrared zoom lenses. Computer Optics 2020; 44(2): 177-182. DOI: 10.18287/2412-6179-CO-623.

References:

  1. Duggin MJ. Discrimination of targets from background of similar temperature, using two-channel data in the 3.5-4.1-μm and 11-12-μm regions. Appl Opt 1986; 25(7): 1186-1195.
  2. Goldberg A, et al. Dual-band imaging of military targets using a QWIP focal plane array. Source: <https://pdfs.semanticscholar.org/c188/60cc22053cef00613170f1ae6b4cd6497d28.pdf>.
  3. Vizgaitis JN, Hastings AR. Dual band infrared picture-in-picture systems. Optical Engineering 2013; 52(6):  061306-1-061306-8.
  4. Zhang, B, Cui Q, Piao M, Hu Y. Design of dual-band infrared zoom lens with multilayer diffractive optical elements. Appl Opt 2019; 58(8): 2058-2067.
  5. Greisukh GI, Ezhov EG, Antonov AI. Correction of chromatism of mid-infrared zoom lenses. Computer Optics 2019; 43(4): 544-549. DOI: 10.18287/2412-6179-2019-43-4-544-549.
  6. ZEMAX: software for optical system design. Source: <http://www.radiantzemax.com/>.
  7. GASIR®1 – Infrared Transmitting Glass. Source: <https://eom.umicore.com/storage/eom/gasir1-for-infrared-optics-old.pdf>.
  8. SCHOTT, your reliable solutions provider in the IR industry Infrared Chalcogenide Glass IRG26. Source: <https://www.schott.com/d/advanced_optics/e8488684-cee0-48c6-8d1b-2eadfb145eca/1.8/schott-infrared-chalcogenide-glasses-irg-26-english-10042017.pdf>.
  9. Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Single-layer kinoforms for cameras and video cameras of mobile communication devices. Computer Optics 2017; 41(2): 218-226. DOI: 10.18287/0134-2452-2017-41-2-218-226.
  10. Kazanskiy NL, Khonina SN, Skidanov RV, Morozov AA, Kharitonov SI, Volotovskiy SG. Formation of images using multilevel diffractive lens. Computer Optics 2014; 38(3): 425-433.
  11. Karpeev SV, Ustinov AV, Khonina SN. Design and analysis of a three-wave diffraction focusing doublet. Computer Optics 2016; 40(2): 173-178. DOI: 10.18287/2412-6179-2015-40-2-173-178.
  12. Khonina SN, Volotovsky SG, Ustinov AV, Kharitonov SI. Analysis of focusing light by a harmonic diffractive lens with regard for the refractive index dispersion. Computer Optics 2017; 41(3): 338-347. DOI: 10.18287/2412-6179-2017-41-3-338-347.
  13. Skidanov RV, Strelkov YS, Volotovsky SG. Harmonic lens with an annular aperture. Computer Optics 2017; 41(6): 842-847. DOI: 10.18287/2412-6179-2017-41-6-842-847.
  14. Edmund Optics: Germanium infrared (IR) Hybrid aspheric lenses. Source: <https://www.edmundoptics.com/f/germanium-infrared-ir-hybrid-aspheric-lenses/14182/>.
  15. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA. Consideration of diffraction efficiency in the design of refractive-diffractive optical systems. Opt J 2016; 83(3): 32-38.
  16. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA. Usievich BA. Spectral and angular dependence of the efficiency of diffraction lenses with a two-relief and two-layer microstructure. Opt J 2015; 82(5): 56-61.
  17. Greisukh GI, Danilov VA, Stepanov SA Antonov AI, Usievich BA. Spectral and angular dependence of the efficiency of three-layer relief-phase diffraction elements of the infrared range. Optics and Spectroscopy 2018; 125(1): 60-64. DOI: 10.1134/S0030400X18070123.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20