(44-4) 11 * << * >> * Russian * English * Content * All Issues

High-speed format 1000BASE-SX / LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT
S.V. Karpeev 1,2, V.V. Podlipnov 1,2, N.A. Ivliev 1,2, S.N. Khonina 1,2

Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF, 1142 kB

DOI: 10.18287/2412-6179-CO-772

Pages: 578-581.

Full text of article: Russian language.

Abstract:
The possibility of constructing a near-infrared atmospheric optical communication system based on a pair of media converters of a signal format 100Base-TX / 1000BASE-T to format 1000BASE-SX / LX with SFP transceivers DEM-310GT was experimentally investigated. The FAN-OUT TUBING FTB900 SN-Y4 fiber cable connector, coming from the receiving radiation collimator for matching with the DEM-310GT transceiver, was modified. The transmitting radiation collimator is supplemented by a spiral phase plate to form a vortex beam. The influence of atmospheric influence on the data rate is analyzed.

Keywords:
information loaded beams, optical vortices, telecommunication wavelength, random fluctuations of the optical medium, scintillation index.

Citation:
Karpeev SV, Podlipnov VV, Ivliev NA, Khonina SN. High-speed format 1000BASE-SX / LX transmission through the atmosphere by vortex beams near IR range with help modified SFP-transmers DEM-310GT. Computer Optics 2020; 44(4): 578-581. DOI: 10.18287/2412-6179-CO-772.

Acknowledgements:
This work was partly funded by the RF Ministry of Education and Science under the research project МК-1797.2019.2 within the State task of the Federal Research Center for "Crystallography and Photonics" RAS (DOE calculation) and the Russian Foundation for Basic Research under RFBR grants ## 18-29-20045-mk (experimental research).

References:

  1. Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review). Prog Electromagn Res 2015; 150: 123-143. DOI: 10.2528/PIER15010802.
  2. Korotkova O. Random light beams: theory and applications. Boca Raton, FL: CRC Press; 2013. ISBN: 978-1-4398-1950-0.
  3. Majumdar AK, Ricklin JC. Free-space laser communications: principles and advances. New York: Springer Science & Business Media; 2008. ISBN: 978-0-387-28652-5.
  4. Mishchenko MI. Electromagnetic scattering by particles and particle groups: An introduction. Cambridge: Cam-bridge University Press; 2014. ISBN: 978-0-521-51992-2.
  5. Tatarskii VI. Wave propagation in a turbulent medium. New York: McGraw-Hill; 1961.
  6. Dainty JC, Ennos AE, Françon M, Goodman JW, McKechnie TS, Parry G. Laser speckle and related phenomena. Berlin: Springer, 1975. ISBN: 978-3-540-07498-4.
  7. Ishimaru A. Wave propagation and scattering in random media. New York: Academic Press; 1978. ISBN: 978-0-12-374701-3.
  8. Fante RL. Wave propagation in random media: a systems approach. Prog Optics 1985; 22: 341-398. DOI: 10.1016/S0079-6638(08)70152-5.
  9. Andrews LC, Phillips RL. Laser beam propagation through random media. Bellingham, WA: SPIE Optical Engineering Press; 1998. ISBN: 978-0-819-42787-8.
  10. Paranin VD, Karpeev SV, Khonina SN. Control of the formation of vortex Bessel beams in uniaxial crystals by varying the beam divergence. Quantum Electronics 2016; 46(2): 163-168. DOI: 10.1070/QEL15880.
  11. Kotlyar VV, Khonina SN, Soifer VA, Algorithm for the generation of non-diffracting Bessel modes. J Mod Opt 1995; 42(6): 1231-1239. DOI: 10.1080/09500349514551071.
  12. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon 2012; 6: 488-496. DOI: 10.1038/nphoton.2012.138.
  13. Khonina SN. Vortex laser beams and their application [In Russian]. In Book: Soifer VA, ed. Nanophotonics and its application in remote sensing systems. Chap 4. Samara: "Novaya Technika" Publisher; 2016: 275-351. ISBN: 978-5-88940-140-7.
  14. Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: Review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  15. Gavrilov AV, Karpeev SV, Kazanskiy NL, Pavelyev VS, Duparré M, Luedge B, Schroeter S. Selective excitation of step-index fiber modes. Proc SPIE 2006; 6605: 660508. DOI: 10.1117/12.728461.
  16. Karpeev SV, Pavelyev VS, Duparre M, Luedge B, Rockstuhl C, Schroeter S. DOE-aided analysis and generation of transverse coherent light modes in a stepped-index optical fiber. Optical Memory and Neural Networks 2003; 12(1); 27-34.
  17. Karpeev SV, Pavelyev, Kazanskiy NL Step-like fiber modes excitement with binary phase DOEs. Optical Memory & Neural Networks (Information Optics) 2005; 14(4): 223-228.
  18. Khonina SN, Podlipnov VV, Karpeev SV, Ustinov AV, Volotovsky SG, Ganchevskaya SV. Spectral control of the orbital angular momentum of a laser beam based on 3D properties of spiral phase plates fabricated for an infrared wavelength. Opt Express 2020; 28(12): 18407-18417. DOI: 10.1364/OE.396199.
  19. Karpeev SV, Podlipnov VV, Ivliev NA, Paranin VD. Transmission and detection of informationally loaded beams of wavelength 1530 nm in a random fluctuating medium. Computer Optics 2019; 43(3): 368-375. DOI: 10.18287/2412-6179-2019-43-3-368-375.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20