(44-5) 02 * << * >> * Russian * English * Content * All Issues

High numerical aperture metalens to generate an energy backflow
V.V. Kotlyar 1,2, S.S. Stafeev 1,2, L. O'Faolain 3,4, M.V. Kotlyar 3

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34,
Centre for Advanced Photonics and Process Analysis, Cork Institute of Technology, Cork T12 P928, Ireland,
4 Tyndall National Institute, Cork T12R5CP, Ireland

 PDF, 2072 kB

DOI: 10.18287/2412-6179-CO-742

Pages: 691-698.

Full text of article: Russian language.

Abstract:
Using electronic beam lithography and reactive ion beam etching, a metalens is manufactured in a thin layer of amorphous silicon of a 130-nm depth, a 30-µm diameter, and a 633-nm focal length (equal to the illumination wavelength). The metalens is composed of 16 sectored subwavelength binary gratings with a 220-nm period. The uniqueness of this metalens is that when illuminated by left-handed circularly polarized light, it is capable of generating a left-handed circularly polarized vortex beam with a topological charge of 2, generating a second-order cylindrical vector beam when illuminated by linearly polarized light. Both for linear and circular incident polarization, an energy backflow is found to be generated in the vicinity of the tight focus. Transverse intensity distributions measured with a scanning near-field optical microscope near the focus of the metalens are in qualitative agreement with the intensity distributions calculated by the FDTD method. This confirms that a backward energy flow takes place at the focus of the metalens. A metalens generating an energy backflow near its focus is fabricated and characterized for the first time.

Keywords:
metalens, subwavelength grating, energy backflow.

Citation:
Kotlyar VV, Stafeev SS, O’Faolain L, Kotlyar MV. High numerical aperture metalens for the formation of energy backflow. Computer Optics 2020; 44(5): 691-698. DOI: 10.18287/2412-6179-CO-742.

Acknowledgements:
This work was financially supported by the RF Ministry of Science and Higher Education within a government project of FSRC "Crystallography and Photonics" RAS ("Introduction" and "Conclusions"), the Russian Science Foundation under project No. 18-19-00595 ("Experiment"), the Russian Foundation for Basic Research under project No. 18-29-2003 ("Numerical simulation"), and the Maria Skladovske-Curie TERRIFIC grant (#749143) ("Manufacturing of the metalens").

References:

  1. Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 2015; 10(11): 937-943.
  2. Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 2015; 6: 7069.
  3. Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12(9): 4932-4936.
  4. Ni X, Ishii S, Kildishev A V., Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl 2013; 2(4): e72.
  5. West PR, Stewart JL, Kildishev AV, Shalaev VM, Shkunov VV, Strohkendl F, Zakharenkov YA, Dodds RK, Byren R. All-dielectric subwavelength metasurface focusing lens. Opt Express 2014; 22(21): 26212-26221.
  6. Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014; 345(6194): 298-302.
  7. Stafeev SS, Kotlyar VV., Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for polarization conversion and focusing of laser light. Photonics Nanostruct 2017; 27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.
  8. Kotlyar V, Stafeev SS, Nalimov AG, O’Faolain L. Subwavelength grating-based spiral metalens for tight focusing of laser light. Appl Phys Lett 2019; 114(14): 141107. DOI: 10.1063/1.5092760.
  9. Yu Y, Huang H, Zhou M, Zhan Q. Engineering of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps. Opt Commun 2018; 407: 398-401.
  10. Zheng C, Su S, Zang H, Ji Z, Tian Y, Chen S, Mu K, Wei L, Fan Q, Wang C, Zhu X, Xie C, Cao L, Liang E. Characterization of the focusing performance of axial line-focused spiral zone plates. Appl Opt 2018; 57(14): 3802-3807.
  11. Lin J, Chen R, Jin P, Cada M, Ma Y. Generation of longitudinally polarized optical chain by 4π focusing system. Opt Commun 2015; 340: 69-73.
  12. Yu Y, Zhan Q. Generation of uniform three-dimensional optical chain with controllable characteristics. J Opt 2015; 17(10): 105606.
  13. Wang X, Zhu B, Dong Y, Wang S, Zhu Z, Bo F, Li X. Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays. Opt Express 2017; 25(22): 26844- 26852.
  14. Chen H, Tripathi S, Toussaint KC. Demonstration of flat-top focusing under radial polarization illumination. Opt Lett 2014; 39(4): 834-837.
  15. Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
  16. Kotlyar VV., Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  17. Stafeev SS, Kotlyar VV, Nalimov AG, Kozlova ES. The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam. IEEE Photonics J 2019; 11(4): 2921669. DOI: 10.1109/JPHOT.2019.2921669.
  18. Kotlyar VV, Nalimov AG, Stafeev SS, O’Faolain L. Single metalens for generating polarization and phase singularities leading to a reverse flow of energy. J Opt 2019; 21(5): 055004. DOI: 10.1088/2040-8986/ab14c8.
  19. Degtyarev S, Savelyev D, Khonina S, Kazanskiy N. Metasurfaces with continuous ridges for inverse energy flux generation. Opt Express 2019; 27(11): 15129-15135. DOI: 10.1364/OE.27.015129.
  20. Kotlyar VV, Stafeev SS, Liu Y, O’Faolain L, Kovalev AA. Analysis of the shape of a subwavelength focal spot for the linear polarized light. Appl Opt 2013; 52(3): 330-339. DOI: 10.1364/AO.52.000330.
  21. Kotlyar VV, Stafeev SS, Nalimov AG, Kovalev AA, Porfirev AP. Mechanism of formation of an inverse energy flow in a sharp focus. Phys Rev A 2020; 101(3): 033811. DOI: 10.1103/PhysRevA.101.033811.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20