(44-5) 06 * << * >> * Russian * English * Content * All Issues

Properties of off-axis caustics of autofocusing chirp beams
A.V. Ustinov 1, S.N. Khonina 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1241 kB

DOI: 10.18287/2412-6179-CO-794

Pages: 721-727.

Full text of article: Russian language.

Abstract:
Autofocusing properties of chirp beams with an arbitrary power-law dependence on the radius are studied theoretically and numerically. Two- and three-parameter chirp beams are considered, the parameter variations of which make it possible to effectively control their autofocusing properties. The results obtained have a potential for various applications in optics and photonics.

Keywords:
autofocusing, off-axis caustics, chirp beams.

Citation:
Ustinov AV, Khonina SN. Properties of off-axis caustics of autofocusing chirp beams. Computer Optics 2020; 44(5): 721-727. DOI: 10.18287/2412-6179-CO-794.

Acknowledgements:
This work was partly funded by the Russian Foundation for Basic Research under grant No. 20-07-00505 (theoretical part) and the Ministry of Science and Higher Education within the government project of FSRC “Crystallography and Photonics” RAS under agreement 007-GZ/Ch3363/26 (numerical calculations).

References:

  1. Askaryan GA. Effects of the gradient of a strong electromagnetic beam on electrons and atoms. JETP 1962; 15: 1088-1090.
  2. Talanov VI. Self-focusing of electromagnetic waves in nonlinear media. Izv VUZov Radiophys 1964; 7(8): 564-565.
  3. Kelley PL. Self-focusing of optical beams. Phys Rev Lett 1965; 15: 1005-1008.
  4. Boyd RW, Lukishova SG, Shen YR, eds. Self-focusing: Past and present. Fundamentals and prospects. New York: Springer; 2009. ISBN: 978-0-387-32147-9.
  5. Kivshar YS, Agrawal GP. Optical solitons. Boston: Academic Press; 2003. ISBN: 978-0-12-410590-4.
  6. Efremidis NK, Christodoulides DN. Abruptly autofocusing waves. Opt Lett 2010; 35(23): 4045-4047. DOI: 10.1364/OL.35.004045.
  7. Papazoglou DG, Efremidis NK, Christodoulides DN, Tzortzakis S. Observation of abruptly autofocusing waves. Opt Lett 2011; 36(10): 1842-1824. DOI: 10.1364/OL.36.001842.
  8. Chremmos I, Efremidis NK, Christodoulides DN. Pre-engineered abruptly autofocusing beams. Opt Lett 2011; 36(10): 1890-1892. DOI: 10.1364/OL.36.001890.
  9. Davis JA, Cottrell DM, Sand D. Abruptly autofocusing vortex beams. Opt Express 2012; 20(12): 13302-13310. DOI: 10.1364/OE.20.013302.
  10. Porfirev AP, Khonina SN. Generation of the azimuthally modulated circular superlinear Airy beams. J Opt Soc Am B 2017; 34(12): 2544-2549. DOI: 10.1364/JOSAB.34.002544.
  11. Ring J, Lindberg J, Mourka A, Mazilu M, Dholakia K, Dennis M. Auto-focusing and self-healing of Pearcey beams. Opt Express 2012; 20(17): 18955-18966. DOI: 10.1364/OE.20.018955.
  12. Chen X, Deng D, Zhuang J, Yang X, Liu H, Wang G. Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams. Appl Opt 2018; 57(28): 8418-8423. DOI: 10.1364/AO.57.008418.
  13. Khonina SN, Ustinov AV, Porfirev AP. Aberration laser beams with autofocusing properties. Appl Opt 2018; 57(6): 1410-1416. DOI: 10.1364/AO.57.001410.
  14. Khonina SN. Specular and vortical Airy beams. Opt Commun 2011; 284(19): 4263-4271. DOI: 10.1016/j.optcom.2011.05.068.
  15. Vaveliuk P, Lencina A, Rodrigo JA, Matos OM. Symmetric Airy beams. Opt Lett 2014; 39(8): 2370-2373. DOI: 10.1364/OL.39.002370.
  16. Belafhal A, Ez-Zariy L, Hennani S, Nebd H. Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams. Opt Photon J 2015; 5(7): 234-246. DOI: 10.4236/opj.2015.57023.
  17. Khonina SN, Ustinov AV. Fractional Airy beams. J Opt Soc Am A 2017; 34(11): 1991-1999. DOI: 10.1364/JOSAA.34.001991.
  18. Zhang P, Prakash J, Zhang Z, Mills MS, Efremidis NK, Christodoulides DN, Chen Z. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt Lett 2011; 36(15): 2883-2885. DOI: 10.1364/OL.36.002883.
  19. Jiang Y, Huang K, Lu X. Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle. Opt Express 2013; 21(20): 24413-24421. DOI: 10.1364/OE.21.024413.
  20. Manousidaki M, Papazoglou DG, Farsari M, Tzortzakis S. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica 2016; 3(5): 525-530. DOI: 10.1364/OPTICA.3.000525.
  21. Panagiotopoulos P, Papazoglou DG, Couairon A, Tzortzakis S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat Commun 2013; 4: 2622. DOI: 10.1038/ncomms3622.
  22. Liu S, Li P, Wang M, Zhang P, Zhao J. Observation of abrupt polarization transitions associated with spin –orbit interaction of vector autofocusing Airy beams. In book: Frontiers in Optics. 2013. Source: <https://www.osapublishing.org/abstract.cfm?uri=FiO-2013-FW1A.5>. DOI: 10.1364/FIO.2013.FW1A.5.
  23. Liu S, Wang M, Li P, Zhang P, Zhao J. Abrupt polarization transition of vector autofocusing Airy beams. Opt Lett 2013; 38(14): 2416-2418. DOI: 10.1364/OL.38.002416.
  24. Degtyarev SA, Volotovsky SG, Khonina SN. Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams. J Opt Soc Am B 2018; 35(8): 1963-1969. DOI: 10.1364/JOSAB.35.001963.
  25. Ustinov AV, Khonina SN. Generalized lens: calculation of distribution on the optical axis. Computer Optics 2013; 37(3): 307-315.
  26. Ustinov AV, Khonina SN. Fracxicon as hybrid element between the parabolic lens and the linear axicon. Computer Optics 2014; 38(3): 402-411.
  27. Khonina SN, Porfirev AP, Ustinov AV. Sudden autofocusing of superlinear chirp beams. J Opt 2018; 20(2): 025605. DOI: 10.1088/2040-8986/aaa075.
  28. Vallee O, Soares M. Airy functions and applications in physics. London: Imperial College Press; 2004. ISBN: 978-1-86094-478-9.
  29. Friberg AT. Stationary-phase analysis of generalized axicons. J Opt Soc Am A 1996; 13(4): 743-750. DOI: 10.1364/JOSAA.13.000743.
  30. Kharitonov SI, Volotovsky SG, Khonina SN. Hybrid asymptotic method for analyzing caustics of optical elements in the axially symmetric case. Computer Optics 2017; 41(2): 175-182. DOI: 10.18287/2412-6179-2017-41-2-175-182.
  31. Kharitonov SI, Volotovsky SG, Khonina SN, Kazanskiy NL. Diffraction catastrophes and asymptotic analysis of caustics from axisymmetric optical elements. Proc SPIE 2019; 11146: 111460K. DOI: 10.1117/12.2526253.
  32. Soifer VA, Kharitonov SI, Khonina SN, Volotovsky SG. Caustics of vortex optical beams. Doklady Physics 2019; 64(7): 276-279. DOI: 10.1134/S102833581907005X.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20