(45-2) 13 * << * >> * Russian * English * Content * All Issues
Identification of pathological changes in the lungs using an analysis of radiological reports and tomographic images
A.A. Sludnova 1, V.V. Shutko 1, A.V. Gaidel 1,2, P.M. Zelter 3, A.V. Kapishnikov 3, A.V. Nikonorov 1,2
1 Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,
2 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia,
3 Samara State Medical University, Samara, Russia
PDF, 950 kB
DOI: 10.18287/2412-6179-CO-793
Pages: 261-266.
Full text of article: Russian language.
Abstract:
This article discusses an idea of a joint analysis of medical images and texts aimed at improving the quality of automated diagnosis of emphysema. We compare the quality of image classification with and without taking into account the localization of the pathology mentioned in radiological reports. The study was carried out on sets of real images of computed tomography of the lungs obtained in clinical studies at Samara State Medical University. It was established that the use of information on the localization of pathology contained in radiological reports leads to an increase in the F-score for the detection from 0.55 to 0.73.
Keywords:
image processing, tomographic image processing, image analysis, Haralick’s features, image classification, radiological report, natural language processing.
Citation:
Sludnova AA, Shutko VV, Gaidel AV, Zelter PM, Kapishnikov AV, Nikonorov AV. Identification of pathological changes in the lungs using an analysis of radiological reports and tomographic images. Computer Optics 2021; 45(2): 261-266. DOI: 10.18287/2412-6179-CO-793.
Acknowledgements:
The work was partially funded by the Russian Foundation for Basic Research under grants No. 19-29-01235 and 19-29-01135 (theoretical results) and the RF Ministry of Science and Higher Education within the government project of the FSRC "Crystallography and Photonics" RAS No. 007-GZ/Ch3363/26 (numerical calculations).
References:
- Zimmerman SL, Kim W, Boonn WW. Informatics in radiology: automated structured reporting of imaging findings using the AIM standard and XML. Radiographics 2011; 31(3): 881-887. DOI: 10.1148/rg.313105195.
- Mendelson DS, Rubin DL. Imaging informatics: essential tools for the delivery of imaging services. Acad Radiol 2013; 20(10): 1195-1212. DOI: 10.1016/j.acra.2013.07.006.
- Rubin DL, Willrett D, O'Connor MJ, Hage C, Kurtz C, Moreira DA. Automated tracking of quantitative assessments of tumor burden in clinical trials. Transl Oncol 2014; 7(1): 23-35. DOI: 10.1593/tlo.13796.
- Rubin DL, Kahn CE Jr. Common data elements in radiology. Radiology 2017; 283(3): 837-844. DOI: 10.1148/radiol.2016161553.
- Ganeshan D, Duong P-AT, Probyn L, Lenchik L, McArthur TA, Retrouvey M, Ghobadi EH, Desouches SL, Pastel D, Francis IR. Structured reporting in radiology. Acad Radiol 2018; 25(1): 66-73.
- Napel S, Mu W, Jardim-Perassi BV, Aerts HJWL, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer 2018; 124(24): 4633-4649. DOI: 10.1002/cncr.31630.
- Kulkarni P, Kulkarni S, Stranieri A. A novel architecture and analysis of challenges for combining text and image for medical image retrieval. International Journal for Infonomics (IJI) 2014; 7(1/2): 885-890.
- Gaidel AV, Zelter PM, Kapishnikov AV, Khramov AG. Computed tomography texture analysis capabilities in diagnosing a chronic obstructive pulmonary disease. Computer Optics 2014; 38(4): 843-850. DOI: 10.18287/0134-2452-2014-38-4-843-850.
- Pashina TA, Gaidel AV, Zelter PM, Kapishnikov AV, Nikonorov AV. Automatic highlighting of the region of interest in computed tomography images of the lungs. Computer Optics 2020; 44(1): 74-81. DOI: 10.18287/2412-6179-CO-659.
- Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern Syst 1979; 9: 62-66.
- Gaidel A. Method of automatic ROI selection on lung CT images. Procedia Eng 2017; 201: 258-264. DOI: 10.1016/j.proeng.2017.09.612.
- Aizawa A. An information-theoretic perspective of tf–idf measures. Inf Process Manag 2003; 39(1): 45-65.
- Cramer JS The origins of logistic regression. Tinbergen Institute Working Paper No. 2002-119/4. Source: <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=360300>. DOI: 10.2139/ssrn.360300.
- Quinlan JR. Simplifying decision trees. Int J Man Mach Stud 1987; 27(3): 221-234.
- Van Rijsbergen CJ. Information retrieval. 2nd ed. Butterworth-Heinemann; 1979.
- Choi E, Bahadori T, Schuetz A, Stewart W, Sun J. RETAIN: Interpretable predictive model in healthcare using reverse time attention mechanism. 2016. Source: <https://arxiv.org/abs/1608.05745>.
- Li Y, Rao S, Solares JRA, et al. BEHRT: Transformer for electronic health records. Sci Rep 2020; 10: 7155.
- Taylor D, Spasov S, Lio P. Co-attentive cross-modal deep learning for medical evidence synthesis and decision making. 2019. Source: <https://arxiv.org/abs/1909.06442>.
- Kreyszig E, Kreyszig H, Norminton EJ. Advanced Engineering Mathematics. 10th ed. New York: John Wiley and Sons Inc; 2011.
- Gruzman IS, Kirichuk VS, Skew VP. Digital image processing in information systems [In Russian]. Novosibisrk: Publishing house of NSTU; 2002.
- Serra J. Image analysis and mathematical morphology. Orlando: Academic Press; 1983.
- Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern Syst 1973; SMC-3(6): 610-621.
- Sadykov SS, Bulanova YuA, Zakharova EA. Computer diagnosis of tumors in mammograms. Computer Optics 2014; 38(1): 131-138. DOI: 10.18287/0134-2452-2014-38-1-131-138.
- Glumov NI, Kapishnikov AV. Computer processing of lung scintigraphic images [In Russian]. Computer Optics 2003; 25(1): 158-164.
- Breiman L. Random forests. Mach Learn 2001; 45(1): 5-32.
- Olatunji T, Yao L, Covington B, Rhodes A, Upton A. Caveats in generating medical imaging labels from radiology reports with natural language processing. 2019. Source: <https://arxiv.org/abs/1905.02283>.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20