(45-3) 12 * << * >> * Russian * English * Content * All Issues

Multispectral optoelectronic device for controlling an autonomous mobile platform
V.S. Titov 1, A.G. Spevakov 1, D.V. Primenko 1

Southwest State University,
305040, Russia, Kursk, ul.50 Let Oktyabrya, 94

 PDF, 1303 kB

DOI: 10.18287/2412-6179-CO-848

Pages: 399-404.

Full text of article: English language.

Abstract:
The paper substantiates the use of multispectral optoelectronic sensors intended to solve the problem of improving the positioning accuracy of autonomous mobile platforms. A mathematical model of the developed device operation has been suggested in the paper. Its distinctive feature is the cooperative processing of signals obtained from sensors operating in ultraviolet, visible, and infrared ranges and lidar. It reduces the computational complexity of detecting dynamic and stationary objects within the field of view of the device by processing data on the diffuse reflectivity of materials. The paper presents the functional organization of a multispectral optoelectronic device that makes it possible to detect and classify working scene objects with less time spending as compared to analogs. In the course of experimental research, the validity of the mathematical model was evaluated and there were obtained empirical data by means of the proposed hardware and software test stand. The accuracy evaluation of the detected object, at a distance of up to 100m inclusive, is within 0.95. At a distance of more than 100 m, it decreases. This is due to the operating range of a lidar. Error in determining spatial coordinates is of exponential character and it also increases sharply at a distance close to 100 m.

Keywords:
multispectral sensor, control device, autonomous mobile platform, image recognition.

Citation:
Titov VS, Spevakov AG, Primenko DV. Multispectral optoelectronic device for controlling an autonomous mobile platform. Computer Optics 2021; 45(3): 399-404. DOI: 10.18287/2412-6179-CO-848.

References:

  1. Hafizov RG, Okhotnikov SA. Recognition of continuous complex-valued image contours [In Russian]. Priborostroenie 2012; 55(5): 3-9.
  2. Titov DV, et al. Processing of multi-spectral images for solving the recognition problem [In Russian]. Telecommunications 2018; 5: 35-38.
  3. Sagdullaev YuS, Kovin SD. Perception and analysis of multi-spectral images [In Russian]. Moscow: "Sputnik" Publisher; 2016.
  4. Spevakov AG, Spevakova SV, Matiushin IS. Detection objects moving in space from a mobile vision system. Radio Electronics, Computer Science, Control 2019; 51(4): 103-110. DOI: 10.15588/1607-3274-2019-4-10.
  5. Kerl C, Sturm J, Cremers D. Dense visual SLAM for RGB-D cameras. In Book: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2013; 2100-2106.
  6. Spevakova SV. Building the route of a mobile robot based on the analysis of multispectral data [In Russian]. Intellektual'nye i Informatsionnye Sistemy 2019; 334-337.
  7. Bekhtin YuS, Emelyanov SG, Titov DV. Theoretical foundations of digital image processing of embedded optoelectronic systems [In Russian]. Moscow: "Argamak-Media" Publisher; 2016.
  8. Shirabakina T.A. Stereoscopic optoelectronic system for determining the parameters of dynamic objects in real time [In Russian]. Datchiki i Sistemy 2004; 6: 65-67.
  9. Kalutskiy I, Spevakova S, Matiushin I. Method of moving object detection from mobile vision system. 2019 International Russian Automation Conference (RusAutoCon) 2019; 1-5. DOI: 10.1109/RUSAUTOCON.2019.8867632.
  10. Spevakov AG. Method of selection of moving objects [In Russian], Izvestiya Yugo-Zapadnogo Gosudarstvennogo Universiteta, Seriya: Upravlenie, Vychislitel'naya Tekhnika, Informatika; Meditsinskoe priborostroenie 2013; 3: 233-237.
  11. Tanygin MO. Investigation of the probability of the occurrence of one type of errors in the system for determining the source of information packages [In Russian]. Izvestiya Yugo-Zapadnogo Gosudarstvennogo Universiteta, Seriya: Upravlenie, Vychislitel'naya Tekhnika, Informatika; Meditsinskoe Priborostroenie 2013; 3: 233-237.
  12. Spevakova SV, Kalutskij IV. Movable stereoscopic device for selecting dynamic objects [In Russian]. Pat RF of Invent N 2714603 C1 of Febryary 18, 2020, Russian Bull of Inventions N5, 2020.
  13. Newcombe RA. KinectFusion: Real-time dense surface mapping and tracking. 2011 10th IEEE International Symposium on Mixed and Augmented Reality 2010; 127-136. DOI: 10.1109/ISMAR.2011.6092378.
  14. Krishnamoorthy S, Soman K. Implementation and comparative study of image fusion algorithms. Int J Comput Appl 2010; 9(2): 25-35. DOI: 10.5120/1357-1832.
  15. Li C. Illumination-aware faster R-CNN for robust multispectral pedestrian detection. Patt Recogn 2019; 85: 161-171. DOI: 10.1016/j.patcog.2018.08.005.
  16. Jiang G. A simultaneous localization and mapping (SLAM) framework for 2.5 D map building based on low-cost LiDAR and vision fusion. Appl Sci 2019; 9(10): 2105. DOI: 10.1007/978-3-540-30301-5.
  17. Bondarenko MA, Drynkin VN. Assessment of the information content of combined images in multispectral systems of technical vision [In Russian]. Programmnye Sistemy i Vychislitel'nye Metody 2016; 1: 64-79. DOI: 10.7256/2305-6061.2016.1.18047.
  18. Tsvetkov OV, Tananykina LV. A preprocessing method for correlation-extremal systems. Computer Optics 2015; 39(5): 738-743. DOI: 10.18287/0134-2452-2015-39-5-738-743.
  19. Zubarev YuB. Spectrozonal methods and systems in space television [In Russian]. Voprosy Radioehlektroniki. Seriya Tekhnika Televideniya 2009; 1: 47-64.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20