(45-4) 05 * << * >> * Russian * English * Content * All Issues

Controlling near-field focusing of a mesoscale binary phase plate in an optical radiation field with circular polarization
Y.E. Geints 1, O.V. Minin 2,3, E.K. Panina 1, I.V. Minin 2,3

V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055, Tomsk, Russia, Academician Zuev Square, 1,
Siberian State University of Geosystems and Technologies, 630108, Novosibirsk, Russia, Plakhotny, 10,
Tomsk Polytechnic University, 634050, Tomsk, Russia, Lenina, 30

 PDF, 1085 kB

DOI: 10.18287/2412-6179-CO-878

Pages: 512-519.

Full text of article: Russian language.

Abstract:
Binary Fresnel zone plates (ZP) are one of the most frequently used focusing elements of inplane optical schemes in micro- and nanophotonics. With a decrease in the diameter and focal distance of the ZP to meso-wavelength sizes, the parameters of the focusing region begin to be significantly influenced by features of the ZP design (material, thickness, relief depth). The spatial structure of the focal spot formed in the near-field is investigated by the numerical finite elements (FEM) simulations of the transmission of a plane optical wave through a mesoscale binary phase ZP. We show that there is a range of optimal etching depths of the ZP ridges and optimal thicknesses of the plate substrate, at which the best focusing of the incident optical wave is realized in terms of the maximum field intensity and the minimum size of the focal spot. In addition, a concept of a super-focusing binary phase ZP with an immersion layer in the form of a truncated cone fabricated of ZP material is proposed, which makes it possible to focus the circularly polarized light wave into a subdiffraction region with a half-width of about "lambda"/2n (n is the ZP refractive index).

Keywords:
Fresnel zone plates, near-field focusing, subdiffraction focusing.

Citation:
Geints YE, Minin OV, Panina EK, Minin IV. Controlling near-field focusing of a mesoscale binary phase plate in an optical radiation field with circular polarization. Computer Optics 2021; 45(4): 512-519. DOI: 10.18287/2412-6179-CO-878.

Acknowledgements:
This work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences) in terms of modeling the meso-wavelength ZP and partially was carried out within the framework of the Tomsk Polytechnic University Competitiveness Enhancement Program.

References:

  1. Berry MV. Evanescent and real waves in quantum billiards and Gaussian beams. J Phys Math Gen 1994; 27: L391-L398. DOI: 10.1088/0305-4470/27/11/008.
  2. Chen G, Wen ZQ, Qiu CW. Superoscillation: from physics to optical applications. Light Sci App 2019; 8: 56. DOI 10.1038/s41377-019-0163-9.
  3. Lim CS, Hong MH, Lin Y, Xie Q, Luk’yanchuk BS, Senthil Kumar A, Rahman M. Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning. App Phys Lett 2006; 89(19): 191125. DOI: 10.1063/1.2374809.
  4. Terris BD, Mamin HJ, Rugar D. Near-field optical data storage. Appl Phys Lett 1996; 68: 141-143. DOI 10.1063/1.112341.
  5. Minin IV, Minin OV. Recent trends in optical manipulation inspired by mesoscale photonics and diffraction optics. Journal of Biomedical Photonics & Engineering 2020; 6(2): 020301. DOI: 10.18287/JBPE20.06.020301.
  6. Minin IV, Minin OV. 3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction limit. Chin Opt Lett 2014; 12(6): 060014. DOI: 10.3788/COL201412.060014.
  7. Menon R, Gil D, Smith HI. Experimental characterization of focusing by high-numerical-aperture zone plates. J Opt Soc Am A 2006; 23(3): 567-571. DOI: 10.1364/JOSAA.23.000567.
  8. Fu Y, Zhou W, Lim LEN, Du CL, Luo XG. Plasmonic microzone plate: Superfocusing at visible regime. Appl Phys Lett 2007; 91: 061124. DOI: 10.1063/1.2769942.
  9. Mote RG, Yu SF, Ng BK, Zhou W, Lau SP. Near-field properties of zone plates in visible regime – New insights. Opt Express 2008; 16(13): 9554-9564. DOI: 10.1364/OE.16.009554.
  10. Mote RG, Yu SF, Kumar A, Zhou W, Li XF. Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) underlinearly polarized illumination. Appl Phys B 2011; 102(1): 95-100. DOI: 10.1007/s00340-010-4210-8.
  11. Mote RG, Yu SF, Zhou W, Li XF. Subwavelength focusing behavior of high numerical aperture phase Fresnel zone plates under various polarization states. Appl Phys Lett 2009; 95: 191113. DOI: 10.1063/1.3263728.
  12. Minin IV, Minin OV, Gagnon N, Petosa A. Investigation of the resolution of phase correcting Fresnel lenses with small values of F/D and subwavelength focus. Computer Optics 2006; 30: 65-68.
  13. Minin IV, Minin OV. Experimental verification 3D subwavelength resolution beyond the diffraction limit with zone plate in millimeter wave. Microw Opt Technol Lett 2014; 56(10): 2436-2439. DOI: 10.1002/mop.28614.
  14. Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Oxford: Pergamon Press; 1959.
  15. Kakichashvili ShD,Wardosanidze ZV. Zone plate with an anisotropy profile. Pis'ma v Zhurnal Tekhnicheskoi Fiziki 1989; 15: 41-44.
  16. Dorn R, Quabis S, Leuchs G. The focus of light—linear polarization breaks the rotational symmetry of the focal spot. J Mod Opt 2003; 50(12): 1917-1926. DOI: 10.1080/09500340308235246.
  17. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc Math Phys Eng Sci 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  18. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys Rev Lett 2003; 91(23): 233901. DOI: 10.1103/PhysRevLett.91.233901.
  19. Khonina SN, Savelyev DA, Pustovoi IA, Serafimovich PG. Diffraction at binary microaxicons in the near field. J Opt Technol 2012; 79(10): 626-631. DOI: 10.1364/JOT.79.000626.
  20. Minin IV, Minin OV. Scanning properties of a diffractive element forming an axially symmetric diffraction limited wave beam [In Russian]. Computer Optics 2004; 26: 65-67.
  21. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J Opt 2013; 15: 085704. DOI: 10.1088/2040-8978/15/8/085704.
  22. Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater 2020; 5: 604-620. DOI: 10.1038/s41578-020-0203-3.
  23. Wu J, Cui X, Lee LM, Yang C. The application of Fresnel zone plate based projection in optofluidic microscopy. Opt Express 2008; 16(2): 15595-15602. DOI: 10.1364/OE.16.015595.
  24. Xie W, Yang J, Chen D, Huang J, Jiang X. On-chip multiwavelength achromatic thin flat lens. Opt Commun 2021; 484: 126645. DOI: 10.1016/j.optcom.2020.126645.
  25. Pang S, Han C, Lee LM, Yang C. Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope. Lab on a Chip 2011; 21: 3698-3702. DOI: 10.1039/C1LC20654K.
  26. StoutGrandy SM, Petosa A, Minin IV, Minin OV, Wight S. Investigation of low profile Fresnel zone plate antennas. Microw Opt Technol Lett 2008; 50(8); 2039-2043. DOI: 10.1002/mop.23593.
  27. Zhang Y, An H, Zhang D, Cui G, Ruan X. Diffraction theory of high numerical aperture subwavelength circular binary phase Fresnel zone plate. Opt Express 2014; 22(22): 27425-27436. DOI: 10.1364/OE.22.027425.
  28. Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972; 6(12): 4370-4379. DOI: 10.1103/PhysRevB.6.4370.
  29. Jones AR. The focal properties of phase zone plates. J Phys D 1969; 2: 1789-1791. DOI 10.1088/0022-3727/2/12/124
  30. Green MA. Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol Energy Mater Sol Cells 2008; 92(11): 1305-1310. DOI: 10.1016/j.solmat.2008.06.009.
  31. Zhang Y, Zheng C, Zhuang Y, Ruan X. Analysis of nearfield subwavelength focusing of hybrid amplitude–phase Fresnel zone plates under radially polarized illumination. J Opt 2014; 16(1): 015703. DOI: 10.1088/20408978/16/1/015703.
  32. Barrett HH, Horrigan FA. Fresnel zone plate imaging of gamma rays: Theory. Appl Opt 1973; 12(11): 2686-2702. DOI: 10.1364/AO.12.002686.
  33. Brunner R, Burkhardt M, Pesch A, Sandfuchs O. Diffraction-based solid immersion lens. J Opt Soc Am A 2004; 21(7): 1186-1191. DOI: 10.1364/JOSAA.21.001186.
  34. Zhang Y, Qian X, Ruan X, Zhu H. Solid immersion Fresnel zone plate in Digital Holography & 3-D Imaging Meeting. OSA Technical Digest (Optical Society of America) 2015: DW2A.15. DOI: 10.1364/DH.2015.DW2A.15.
  35. Suyama T. The focusing characteristics on the binary phase sub-wavelength Fresnel zone plate. Int J Phys 2019; 7(3): 86-90. doi: 10.12691/ijp-7-3-3.
  36. Geints YuE, Zemlyanov AA, Panina EK. Photonic jets from resonantly-excited transparent dielectric microspheres. J Opt Soc Am B 2012; 29(4): 758-762. DOI: 10.1364/JOSAB.29.000758.
  37. Minin IV, Minin OV, Cao Y, Yan B, Wang Z, Luk'yanchuk B. Photonic lenses with whispering gallery waves at Janus particles. Source: <https://arxiv.org/abs/2012.09489>.
  38. Minin IV, Minin OV. Millimeter wave binary photon sieve Fresnel zone plate: FDTD analysis. Prog Electromagn Res Lett 2013; 43: 149-154. DOI: 10.2528/PIERL13091614.
  39. Minin IV, Minin OV. Shadowing effect in curvilinear diffractive lens antennas. Proc Asia-Pacific Microwave Conference 2005; 4: 1-3. DOI: 10.1109/APMC.2005.1606853.
  40. Stafeev SS, O’Faolain L, Kotlyar VV, Nalimov AG. Tight focus of light using micropolarizer and microlens. Appl Opt 2015; 54(14): 4388-4394. DOI: 10.1364/AO.54.004388.
  41. Lee SY, Cho IH, Kim JM, Kang HC, Noh DY. Hard X-ray microbeam lithography using a Fresnel zone plate with a long focal length. J Synchrotron Radiat 2011; 18: 143-147. DOI: 10.1107/S0909049510044535.
  42. Bouloumis TD, Chormaic SN. From far-field to near-field micro- and nanoparticle optical trapping. Appl Sci 2020; 10(4): 1375. doi: 10.3390/app10041375.
  43. Minin IV, Minin OV, Geints YuE, Panina EK, Karabchevsky A. Optical manipulation of micro- and nanoobjects based on structured mesoscale particles: a brief review. Atmospheric and Oceanic Optics 2020; 33(5): 404-469. DOI: 10.1134/S1024856020050115.
  44. Pacheco-Peña V, Navarro-Cía M, Orazbayev B, Minin IV, Minin OV, Beruete M. Zoned fishnet lens antenna with optimal reference phase for side lobe reduction. IEEE Trans Antennas Propag 2015; 63(8): 3710-3714. DOI: 10.1109/TAP.2015.2432855.
  45. Minin IV, Minin OV Concept of near-field millimeter-wave imaging system with a spatial resolution beyond the Abbe barrier. Proc China-Japan Joint Microwave Conference 2008: 509-512. DOI: 10.1109/CJMW.2008.4772481.
  46. Schonbrun E, Ye WN, Crozier KB. Scanning microscopy using a short-focal-length Fresnel zone plate. Opt Lett 2009; 34(14): 2228-2230. DOI: 10.1364/OL.34.002228.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20