(45-4) 09 * << * >> * Russian * English * Content * All Issues

Mathematical simulation of a 3D scanner for controlling the mirror system of the Millimetron Observatory
S.N. Makarov 1, A.G. Verhoglyad 1, M.F. Stupak 1, D.A. Ovchinnikov 2, J.A. Oberemok 2

Technological Design Institute of Scientific Instrument Engineering,
Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630058, Russian, 41,
"ISS by M.F. Reshetnev", Zzheleznogorsk, Krasnoyarsk Region

 PDF, 1473 kB

DOI: 10.18287/2412-6179-CO-833

Pages: 541-550.

Full text of article: Russian language.

Abstract:
We develop an original system for controlling the mirror geometry of the Millimetron observatory as a part of the on-board scientific equipment. The system is designed to monitor the quality of the space telescope's mirror system and use the data received as feedback signals for presetting and adjusting the telescope's optical system in outer space. The system aims to determine a multi-dimensional vector of unknown parameters that define the state of the telescope's mirror system by indirect measurements of the telescope with a 3D scanner. An unparalleled mathematical model has been created, numerically describing a process of pre-measurement of the mirror system of the Millimetron Observatory using optical control marks on the surface of the mirror system. Using the mathematical model created and the geometric optics approximation, we numerically simulate the performance of the on-board 3D scanner in the course of preliminary measurements of the mirror system of the Millimetron Observatory using optical control marks applied on the mirror surfaces. A new effective method of pre-estimation of the displacement of elements of the AP telescope by indirect (implicit) measurements performed with the 3D scanner has been created. The method is based on the mathematical transformation of indirect measurements of deviations of the position of the telescope's mirror control marks from their reference position, which provides an easy-to-use list of estimates of the offsets of the unknown parameters of the mirror system elements. A possibility to measure the telescope's mirror system with the aim to pre-configure it using a 3D scanner on board the spacecraft is shown. Estimates of acceptable deviations of the mirror system component needed to ensure the telescope's functionality are given.

Keywords:
mathematical model, numerical modeling, mirror system of the Millimetron Observatory, control system, telescope shape, control tags, 3D scanner.

Citation:
Makarov SN, Verhoglyad AG, Stupak MF, Ovchinnikov DA, Oberemok JA. Mathematical simulation of a 3D scanner for controlling the mirror system of the Millimetron Observatory. Computer Optics 2021; 45(4): 541-550. DOI: 10.18287/2412-6179-CO-833.

Acknowledgements:
This work was supported by the RF Ministry of Science and Higher Education under project АААА-А20-120102190007-5.

References:

  1. Kardashev NS, Novikov ID, Lukash VN, Pilipenko SV, Mikheeva EV, Bisikalo DV, Wiebe DZ, Doroshkevich AG, Zasov AV, Zinchenko II, Ivanov PB, Kostenko VI, Larchenkova TI, Likhachev SF, Malov IF, Malofeev VM, Pozanenko AS, Smirnov AV, Sobolev AM, Cherepashchuk AM, Shchekinov YuA. Review of scientific topics for Millimetron space observatory. Phys Usp 2014; 57: 1199-1228. DOI: 10.3367/UFNe.0184.201412c.1319.
  2. Smirnov AV, Baryshev AM, Pilipenko SV, et al. Space mission Millimetron for terahertz astronomy. Proc SPIE 2012; 8442: 84424C. DOI: 10.1117/12.927184.
  3. The website of the Astrospace Center of FIAN, Moscow. Source: <http://millimetron.web2.ru/ru/>.
  4. Lukin AV, Melnikov AN, Skolyarov AF. Control of the mirror counter-reflector of the telescope "Millimetron" based on the use of a synthesized hologram [In Russian]. Photonics 2016; 5; 44-48.
  5. Poleschuk AG, Nasyrov RK, Matochkin AE, et al. development of the interfering-holographic IR system to control the shape of the central parabolic mirror of the Millimetron Observatory space telescope [In Russian]. Works of Interexpo Geo-Siberia 2015; 1: 51-58.
  6. Verhoglyad AG, Michalkin VM, Kuklin VA, Halimanovitch VI, Chugui YV. System of control of geometric parameters of the central mirror of the Millimetron Space Telescope [In Russian]. Collection of works "Reshetnev Readings" 2014; 1(18): 61-63.
  7. Kirichenko DV, Kleimyonov VV, Novikova EV. Large optical space-based telescopes [In Russian]. Journal of Instrument Engineering 2017; 60(7): 589-602. DOI: 10.17586/0021-3454-2017-60-7-589-602.
  8. Demin AV, Denisov AV, Letunovsky AV. Spaceborne optical-digital systems and complexes [In Russian]. Journal of Instrument Engineering 2010; 53(3): 51-59.
  9. Demin AV. Mathematical model of composite mirror adjustment process [In Russian]. Journal of Instrument Engineering 2015; 58(11): 901-907. DOI: 10.17586/0021-3454-2015-58-11-901-907.
  10. Demin AV, Rostokin PV. Alignment algorithm for composite mirrors. Computer Optics 2017; 41(2): 291-294. DOI: 10.18287/2412-6179-2017-41-2-291-294.
  11. Olczak G, Wells C, Fischer DJ, Connolly MT. Wavefront calibration testing of the James Webb Space Telescope primary mirror center of curvature optical assembly. Proc SPIE 2012; 8450: 84500R. DOI: 10.1117/12.927003.
  12. Conquet B, Zambrano LF, Artyukhina NK, Fiodоrtsev RV, Silie AR. Algorithm and mathematical model for geometric positioning of segments on aspherical composite mirror. Devices and Methods of Measurements 2018; 9(3): 234-242. DOI: 10.21122/2220-9506-2018-9-3-234-242.
  13. Batshev VI, Puryaev DT. Optical system and positioning control techniques of the composite parabolic mirror segments of the millimetron space observatory radio telescope [In Russian]. Measuring Technology 2009; 5: 29-31.
  14. Puryaev DT, Batshev VI, Pashevova OV. Optical testing of “Millimetron” space observatory convex hyperbolic mirror [In Russian]. Engineering Journal: Science and Innovation 2013; 7: 833. Source: <http://engjournal.ru/catalog/pribor/optica/833.html>.
  15. V.V. Sychev, A.I. Klem. Algorithm for controlling a multi-element mirror using the space telescope of the "Millimetron" observatory as an example [In Russian]. Optika Atmosfery i Okeana 2018; 7: 578-586. DOI: 10.15372/AOO20180712.
  16. Somov SE. Alignment and calibration of an information-measuring system for the orientation determinating a land-imagery satellite and its observing equipment [In Russian]. Izvestia of Samara Scientific Center of the Russian Academy of Sciences 2018; 20(1:81): 87-96. DOI: 10.24411/1990-5378-2018-00127.
  17. Anaconda. Source: <www.anaconda.com>.
  18. Ilyin VA, Kim GD. Linear algebra and analytical geometry [In Russian]. Moscow: "Prospect" Publisher; 2012.
  19. VTK (Visualization Toolkit). Source: <https://vtk.org/>.
  20. Belsley DA, Kuh E, Welsch RE. Regression diagnostics: Identifying influential data and sources of collinearity. Hoboken, NJ: John Wiley and Sons; 1980: 100-104.
  21. Ilyin VA, Pozniak EG. Linear algebra [In Russian]. Moscow: "Fismatlit" Publisher; 2004. ISBN: 5-9221-0481-0.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20