(46-5) 05 * << * >> * Russian * English * Content * All Issues

Investigation of the operating conditions influence on the optical telescope performance when capturing star images
S.V. Tsaplin 1, I.V. Belokonov 1, S.A. Bolychev 1, A.E. Romanov 1

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1735 kB

DOI: 10.18287/2412-6179-CO-1105

Pages: 713-723.

Full text of article: Russian language.

Abstract:
We propose combining the functionality of star sensors and the optical system of a nanosatel-lite optical-electronic telescopic module (OETM) for Earth remote sensing (ERS) in order to re-duce the influence of thermoregulation inaccuracy on the accuracy of linking the star sky and the Earth's surface images. The main difference from the previous works is that for the thermoregula-tion inaccuracy to be reduced, we use controlled local film electric heaters with moderate energy consumption located on the periphery of optical elements of the OETM system. High quality of the star sky images is sought to be attained for a nanosatellite-borne telescope in a circular sun-synchronous orbit (SSO) and includes solving a number of tasks discussed below. Arguments are given in favor of using the proposed OETM, which is capable of fully complementing / replacing the onboard astronomical imaging system of spacecraft.

Keywords:
astroorientation, astrocorrection, astronavigation, Earth remote sensing, nanosatellite, optoelectronic telescopic complex, thermal control system, temperature field, heat flow, star sky, modulation transfer function.

Citation:
Tsaplin SV, Belokonov IV, Bolychev SA, Romanov AE. Investigation of the operating conditions influence on the optical telescope performance when capturing star images. Computer Optics 2022; 46(5): 713-723. DOI: 10.18287/2412-6179-CO-1105.

Acknowledgements:
This research was funded as part of a government project under grant # 0777-2020-0018 for the winners of the competition of university research laboratories, awarded by the Ministry of Science and Higher Education of the Russian Federation.

References:

  1. Tsaplin SV, Bolychev SA. Thermal control of spacecraft star sensor attitude control system based on the solution of a coupled thermoelasticity problem [In Russian]. Vestnik of Samara University. Aerospace and Mechanical Engineering 2016; 15(2): 90-101. DOI: 10.18287/2412-7329-2016-15-2-90-101.
  2. Stekolshchikov OYu, Zakharov AI, Prokhorov ME. Design philosophy of a star tracker of the SAI MSU with the mirror objective and narrow field of view [In Russian]. Mechanics, Control and Informatics 2013; 1(13): 69-79.
  3. Prokhorov ME, Zakharov AI, Mironov AV, Nikolaev FN, Tuchin MS. Modern stellar orientation sensors [In Russian]. Proc 38th Conference "Space Physics" 2012: 170-186.
  4. Zakharov AI, Mironov AV, Nikolaev FN, Prokhorov ME, Tuchin MS. Next generation stellar orientation sensors [In Russian]. Proc IAA RAN 2009; 20: 427-432.
  5. Spacecraft thermal control handbook. Vol. 1: Fundamental technologies. Segundo, California: Aerospace Press E1; 2002.
  6. Champagne JA, Burge JH, Crowther BG. Thermo-opto-Mechanical analysis of a cubesat lens mount. Proc. Of SPIE Optomechanics 2011: Innovations and solutions. vol. 8125 2011: 812510. DOI: 10.1117/12.893199.
  7. Pang Z, Song Z, Sun Z, Cheng P, Dan L, Li W, Fan X. Optical system design and manufacture for a 1U CubeSat, Proc. SPIE 11341, AOPC 2019: Space Optics, Telescopes, and Instrumentation 2019: 113410. DOI: 10.1117/12.2542219.
  8. Biryuchinskiy S, Churayeu S, Jeong Y. Compact Optical Systems for Space Applications. J. Space Technol. Appl. 2021: 104-120. DOI: 10.52912/jsta.2021.1.1.104.
  9. Tsaplin SV, Bolychev SA. Investigation of the influence of thermal factors on the optical system of a nanosatellite in the starry sky survey mode [In Russian]. Proc XXI Int Conf on Computational Mechanics and Modern Applied Software Systems (VMSPPS'2019) 2019: 749-751.
  10. Tsaplin SV, Bolychev SA, Romanov AE. Dynamics of changes in temperature fields and deformations of the elements of the optical-electronic telescopic module in the continuous mode of spacecraft astro-orientation [In Russian]. Proc XIII Int Conf on Applied Mathematics and Mechanics in the Aerospace Industry (AMMAI'2020) 2020: 448-450.
  11. Anderson L, Mork J, Swenson C, Zwolinski B, Mastropietro AJ, Sauder J, McKinley I, Mok M. CubeSat active thermal control in support of advanced payloads: the active thermal architecture project. Proc. SPIE 11832, CubeSats and SmallSats for Remote Sensing V 2021: 1183203. DOI: 10.1117/12.2594375.
  12. KAI-08050: Interline transfer CCD image sensor, 8.1 MP. Source: <https://www.onsemi.com/products/sensors/image-sensors/kai-08050>.
  13. Teledyne imaging. Technical specifications of SCD 270-00 F5. Source: <https://www.teledyneimaging.com/en/aerospace-and-defense/products/sensors-overview/ccd/ccd270-00-f4/>.
  14. Tsaplin SV, Tyulevin SV, Bolychev SA, Romanov AE. Fundamentals of heat transfer in space instrumentation: textbook [In Russian]. Samara: Samara University Publisher; 2018.
  15. Kuzin SV, Ulyanov AS, Shestov SV, Bogachev SA, Karabadzhak GF. Space object observation using star trackers within the SPIRIT/CORONAS-F and TESIS/CORONAS-Photon experiments [In Russian]. Proc Third All-Russian Scientific and Technological Conference “Contemporary Problems of Spacecraft Attitude Determination and Control” 2012: 58-68.
  16. Bogachev SA, Erkhova NF, Ulyanov AS, Kholodilov AA, Pertsov AA, Kuzin SV. Space debris registration by optical cameras on board CubeSat [In Russian]. ProcSpace Debris: Fundamental and Practical Aspects of the Threat, IKI RAN, Moscow 2019: 63-69.
  17. Industry standard OST-92-1380-83. Multilayer thermal insulation. Grades and specifications [In Russian]. "Energiya" Publisher; 1998.
  18. Malozemov VV. Thermal regime of spacecrafts [in Russian]. Moscow: "Mashinostroenie" Publisher; 1980.
  19. Nowacki W. Teoria sprężystości. Warszawa: Państwowe Wydawnictwo Naukowe; 1970.
  20. Kazanskiy N., Ivliev N., Podlipnov V., Skidanov R. An airborne offner imaging hyperspectrometer with radially-fastened primary elements. Sensors 2020; 20(12): 3411. DOI: 10.3390/s20123411.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20