(47-3) 10 * << * >> * Russian * English * Content * All Issues

An adaptive image steganography algorithm based on the use of non-cryptographic hash functions for data extraction
М.А. Dryuchenko 1

Voronezh State University, 394018, Voronezh, Russia, Universitetskaya pl. 1

 PDF, 967 kB

DOI: 10.18287/2412-6179-CO-1215

Pages: 415-425.

Full text of article: Russian language.

Abstract:
An adaptive steganography algorithm for data hiding in full-color images based on iterative introduction of minor distortions into blocks of container images and the use of high-speed non-cryptographic hash functions for data extraction is considered. Modification of the minimum number of container elements compared to the length of the hidden message is a distinctive feature of the algorithm. This feature allows the hidden throughput to be increased and the visual and statistical visibility of hidden data to be reduced. The algorithm is compared with modern algorithms of adaptive spatial steganography in terms of assessing the level of distorting changes in stego-containers. In addition, a modified version of the algorithm that implements covert channel multiplexing using a common subset of container elements when embedding various messages into them is considered.

Keywords:
steganography, non-cryptographic hash codes, cyclic redundancy codes.

Citation:
Dryuchenko MA. An adaptive image steganography algorithm based on the use of non-cryptographic hash functions for data extraction. Computer Optics 2023; 47(3): 415-425. DOI: 10.18287/2412-6179-CO-1215.

References:

  1. Holub V, Fridrich J. Designing steganographic distortion using directional filters. 2012 IEEE Int Workshop on Information Forensics and Security (WIFS) 2012: 234-239. DOI: 10.1109/WIFS.2012.6412655.
  2. Holub V, Fridrich J. Digital image steganography using universal distortion. IH&MMSec '13: Proc 1st ACM Workshop on Information Hiding and Multimedia Security 2013: 59-68. DOI: 10.1145/2482513.2482514.
  3. Pevný T, Filler T, Bas P. Using high-dimensional image models to perform highly undetectable steganography. In Book: Böhme R, Fong PWL, Safavi-Naini R, eds. Information hiding. Berlin, Heidelberg: Springer-Verlag; 2010: 161-177. DOI: 10.1007/978-3-642-16435-4_13.
  4. Nguyen TD, Arch-int S, Arch-int N. An adaptive multi bit-plane image steganography using block data-hiding. Multimed Tools Appl 2015; 75(14): 8319-8345. DOI: 10.1007/s11042-015-2752-9.
  5. Paul G, et al. Keyless dynamic optimal multi-bit image steganography using energetic pixels. Multimed Tools Appl 2017; 76(5): 7445-7471. DOI: 10.1007/s11042-016-3319-0.
  6. Fridrich J, Goljan M. Digital image steganography using stochastic modulation. Proc SPIE 2003; 5020: 191-202. DOI: 10.1117/12.479739.
  7. Eltisheva EYu, Fionov AI. Creation of a steganographic system for raster images based on the principles of stochastic modulation considering the statistics of the least significant bits [In Russian]. Proc Siberian State University of Telecommunications and Informatics 2011; 2: 63-75.
  8. Sirota AA, Dryuchenko MA, Mitrofanova EYu. Digital watermarking method based on heteroassociative image compression and its realization with artificial neural networks. Computer Optics 2018; 42(3): 483-494. DOI: 10.18287/2412-6179-2018-42-3-483-494.
  9. Swain G. Adaptive pixel value differencing steganography using both vertical and horizontal edges. Multimed Tools Appl 2016; 75: 13541-13556. DOI: 10.1007/s11042-015-2937-2.
  10. Pradhan А, Krovi RS, Swain G. Adaptive PVD steganography using horizontal, vertical, and diagonal edges in six-pixel blocks. Secur Commun Netw 2017; 2017: 1924618. DOI: 10.1155/2017/1924618.
  11. Zhou Z, Sun H, Harit R, Chen X, Xingming S. Coverless image steganography without embedding. In Book: Huang Z, Sun X, Luo J, Wang J, eds. Cloud computing and security. Switzerland: Springer International Publishing; 2015: 123-132. DOI: 10.1007/978-3-319-27051-7_11.
  12. Zheng Sh, Wang L, Ling B, Hu D. Coverless information hiding based on robust image hashing. In Book: Huang D-S, Hussain A, Han K, Gromiha MM, eds. Intelligent computing methodologies. Cham: Springer International Publishing AG; 2017: 536-547. DOI: 10.1007/978-3-319-63315-2_47.
  13. Liu Q, Xiang X, Qin J, Tan Y, Tan J, Luo Y. Coverless steganography based on image retrieval of DenseNet features and DWT sequence mapping. Knowledge-Based Systems 2020; 192: 105375. DOI: 10.1016/j.knosys.2019.105375.
  14. Zou L, Sun J, Gao M, Wan W, Gupta BB. A novel coverless information hiding method based on the average pixel value of the sub-images. Multimed Tools Appl 2019; 78: 7965-7980. DOI: 10.1007/s11042-018-6444-0.
  15. Kozachok AV, Kopylov SA, Meshcheryakov RV, Evsutin OO. Review of the current methods for robust image hashing. Computer Optics 2017; 41(5): 743-755. DOI: 10.18287/2412-6179-2017-41-5-743-755.
  16. Hu D, Wang L, Jiang W, Zheng S, Li B. A novel image steganography method via deep convolutional generative adversarial networks. IEEE Access 2018; 6: 38303-38314. DOI: 10.1109/ACCESS.2018.2852771.
  17. Ping W, Sheng L, Xinpeng Z, Ge L, Zhenxing Q, Qing Z. Generative steganography network. MM '22: Proc 30th ACM Int Conf on Multimedia 2022: 1621-1629. DOI: 10.1145/3503161.3548217.
  18. Dryuchenko MA. Steganographic algorithm for data hiding in jpeg images based on the use of convolution functions [In Russian]. Proc Voronezh State University: Systems analysis and information technologies 2018; 3: 93-102. DOI: 10.17308/sait.2018.3/1235.
  19. Aappleby/smhasher. Source: <https://github.com/aappleby/smhasher/>.
  20. The 512×512 PPG-LIRMM-COLOR Database. Source: <https://www.lirmm.fr/~chaumont/PPG-LIRMM-COLOR.html>.
  21. Yedroudj M, Comby F, Chaumont M. Yedrouj-Net: An efficient CNN for spatial steganalysis. arXiv Preprint. 2018. Source: <https://arxiv.org/abs/1803.00407>. DOI: 10.48550/arXiv.1803.00407.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20