(47-4) 06 * << * >> * Russian * English * Content * All Issues

Surface roughness influence on photonic nanojet parameters of dielectric microspheres
Y.E. Geints 1, E.K. Panina 1

V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055, Tomsk, Russia, Academician Zuev Square 1

 PDF, 1247 kB

DOI: 10.18287/2412-6179-CO-1280

Pages: 559-566.

Full text of article: Russian language.

Abstract:
All naturally found and technologically fabricated solid microparticles possess surface roughness. Upon optical wave scattering from such particles, in addition to its geometric shape, the surface relief becomes an important morphological factor determining the optical properties of the scatterer. We present results of the numerical 3D-simulations of focusing an optical wave with a dielectric microsphere with randomly distributed surface roughness. We address different cases of azimuthally symmetric and asymmetric distortions of the particle surface. We show that the key parameters of the near-field focal region (intensity, longitudinal and transverse dimensions) referred to as a photonic nanojet (PNJ) are sensitive to changes in the microsphere surface texture. Two important PNJ parameters, the peak intensity and the longitudinal length, are subject to more prominent changes. The influence of the optical contrast (relative refractive index) of the microsphere on PNJ parameters is investigated in detail. The possibility of reducing the influence of surface roughness on the near-field focusing strength by microsphere watering (water-uptake) is demonstrated.

Keywords:
photonic nanojet, dielectric microsphere, near-field focusing, surface roughness.

Citation:
Geints YE, Panina EK. Surface roughness influence on photonic nanojet parameters of dielectric microspheres. Computer Optics 2023; 47(4): 559-566. DOI: 10.18287/2412-6179-CO-1280.

Acknowledgements:
The work was carried out with the support of the Ministry of Science and Higher Education as part of the execution of work on the State task of the IAO SB RAS.

References:

  1. Wielicki BA, Barkstrom BR, Baum BA, Charlock TP, Green RN, Kratz DP, Lee RB, Minnis P, Smith GL, Wong T, Young DF, Cess RD, Coakley JA, Crommelynck AH, Donner L, Kandel R, King MD, Miller AJ, Ramanathan V, Radall DA, Stowe LL, Welch RM. Clouds and earth’s radiant energy system (CERES): Algorism overview. IEEE Trans Geosci Remote Sensing1998; 36: 1127-1141.
  2. Panchenko MV, Kabanov MV, Pkhalagov YuA, Belan BD, Kozlov VS, Sakerin SM, Kabanov DM, Uzhegov VN, Shchelkanov NN, Polkin VV, Terpugova SA, Tolmachev GN, Yausheva EP, Arshinov MYu, Simonenkov DV, Shmargunov VP, Chernov DG, Turchinovich YuS, Pol’kin VV, Zhuravleva TB, Nasrtdinov IM, Zenkova PN. Integrated studies of tropospheric aerosol at the institute of atmospheric optics (development stages). Atmospheric Ocean Opt 2020; 33(01): 27-41.
  3. Pan YL, Aptowicz KB, Chang RK, Hart M, Eversole JD. Characterizing and monitoring respiratory aerosols by light scattering. Opt Lett 2003; 28(8): 589-591.
  4. Zenkova PN, Chernov DG, Shmargunov VP, Panchenko MV, Belan BD. Submicron aerosol and absorbing substance in the troposphere of the russian sector of the arctic according to measurements onboard the Tu-134 Optik Aircraft Laboratory in 2020. Atmospheric Ocean Opt 2022; 35(01): 43-51.
  5. Chen Z, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt Express 2004; 12(7): 1214-1220.
  6. Li X, Chen Z, Taflove A, Backman V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt Express 2005; 13(22): 526-533.
  7. Kato S, Chonan S, Aoki T. High-numerical-aperture microlensed tip on an air-clad optical fiber. Opt Lett 2014; 39(4): 773-776.
  8. Liu C, Ye A. Microsphere assisted optical super-resolution imaging with narrowband illumination. Optics Communications 2021; 485: 126658 DOI: 10.1016/j.optcom.2020.126658.
  9. Assafrao AC, Kumar N, Wachters AJH, Pereira SF, Urbach HP, Brun M, Segolene O. Application of micro solid immersion lens as probe for near-field scanning microscopy. Appl Phys Lett 2014; 104: 101101. DOI: 10.1063/1.4867460.
  10. Cui X, Erni D, Hafner C. Optical forces on metallic nanoparticles induced by a photonic nanojet. Opt Express 2008; 16: 13560-13568.
  11. Zaitsev VD, Stafeev SS. Photonic jets arrays produced by triangular dielectric prisms for Mid-IR imaging. Photonics & Electromagnetics Research Symposium – Spring (PIERS–SPRING) 2020: 2610-2614. DOI: 10.1109/PIERS-Spring46901.2019.9017599.
  12. Geints YuE, Zemlyanov AA, Panina EK. Microaxicon-generated photonic nanojets. J Opt Soc Am B 2015; 32(8): 1570-1574. DOI: 10.1364/JOSAB.27.001991.
  13. Geints YuE, Zemlyanov AA, Minin OV, Minin IV. Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D- and 3D-spatial configurations. J Opt 2018; 20(6): 065606. DOI: 10.1088/2040-8986/aac1d9.
  14. Chen Z, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt Express 2004; 12(7): 1214-1220.
  15. Geints YuE, Panina EK, Zemlyanov AA. Control over parameters of photon nanojets of dielectric microspheres. Opt Commun 2010; 283(23): 4775-4781. DOI: 10.1016/j.optcom.2010.07.007.
  16. Geints YuE, Minin IV, Panina EK, Zemlyanov АА, Minin ОV. Comparison of photonic nanojets key parameters produced by nonspherical microparticles. Opt Quantum Electron 2017; 49(3): 118. DOI: 10.1007/s11082-017-0958-y.
  17. Mandal A, Tiwari P, Upputuri PK, Dantham VR. Characteristic parameters of photonic nanojets of single dielectric microspheres illuminated by focused broadband radiation. Sci Rep 2022; 12: 173. DOI: 10.1038/s41598-021-03610-3.
  18. Geints YuE, Zemlyanov AA, Panina EK. Photonic jets from resonantly-excited transparent dielectric microspheres. J Opt Soc Am B 2012; 29(4): 758-762.
  19. Devilez A, Bonod N, Stout B, Gerard D, Wenger J, Rigneault H, Popov E. Three-dimensional subwavelength confinement of light with dielectric microspheres. Opt Express 2009; 17(4): 2089-2094.
  20. Lecler S, Takakura Y, Meyrueis P. Properties of a three-dimensional photonic jet. Opt Lett 2005; 30(19): 2641-2643.
  21. Itagi AV, Challener WA. Optics of photonic nanojets. J Opt Soc Am A 2005; 22(12): 2847-2858.
  22. Abdurrochman A, Lecler S, Mermet F, Tumbelaka BY, Serio B, Fontaine J. Photonic jet breakthrough for direct laser microetching using nanosecond near-infrared laser. Appl Opt 2014; 53: 7202-7207.
  23. Astratov VN, Darafsheh A, Kerr MD, Allen KW, Fried NM, Antoszyk AN, Ying HS. Photonic nanojets for laser surgery. SPIE Newsroom 2010. Source: <https://spie.org/news/2578-photonic-nanojets-for-laser-surgery?SSO=1>. DOI: 10.1117/2.1201002.002578.
  24. Terakawa M, Tanaka Y. Dielectric microsphere mediated transfection using a femtosecond laser. Opt Lett 2011; 36: 2877-2879.
  25. Garces-Chavez V, McGloin D, Melville H, Sibbett W, Dholakia K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 2002; 419(6903): 145-147. DOI: 10.1038/nature01007.
  26. Zhou Zz, Ali H, Hou Zs, Hue W, Cao Y. Enhanced photonic nanojets for submicron patterning. J Cent South Univ 2022; 29: 3323-3334. DOI: 10.1007/s11771-022-5116-4.
  27. Lia C, Kattawara GW, Yangb P. Effects of surface roughness on light scattering by small particles, J Quant Spectrosc Radiat Transf 2004; 89: 123-131.
  28. Sun W, Nousiainen T, Muinonen K, Fu Q, Loeb NG, Videen G. Light scattering by Gaussian particles: a solution with finite-difference time domain technique. J Quant Spectrosc Radiat Transf 2003; 79-80: 1083-1090. DOI: 10.1016/S0022-4073(02)00341-2.
  29. Li C, Kattawara GW, Yang P. Effects of surface roughness on light scattering by small particles. J Quant Spectrosc Radiat Transf 2004; 89: 123-131.
  30. Mahariq I, Astratov VN, Kurt H. Persistence of photonic nanojet formation under the deformation of circular boundary. J Opt Soc Am B 2016; 33: 535-542. DOI: 10.1364/JOSAB.33.000535.
  31. Mahariq I, Abdeljawad T, Karar AS, Alboon SA, Kurt H, Maslov AV. Photonic nanojets and whispering gallery modes in smooth and corrugated micro-cylinders under point-source illumination. Photonics 2020; 7(3): 50. DOI: 10.3390/photonics7030050.
  32. Luk’yanchuk BS, Paniagua-Domínguez R, Minin IV, Minin OV, Wang Z. Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited]. Opt Mater Express 2017; 7(6): 1820-1847.
  33. Geints YuE, Zemlyanov AA, Pal'chikov AV. Influence of droplet surface deformations on stimulated Raman scattering of light. Atmospheric Ocean Opt 1997; 10(12): 974-978.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20