(47-4) 14 * << * >> * Russian * English * Content * All Issues

The preliminary study of diabetic retinopathy detection based on intensity parameters with optical coherence tomography angiography
J. Hou 1, H. Shi 1, W. Gao 2, P. Lin  , B. Li 3, Y. Shi 3, I.A. Matveeva 4, V.P. Zakharov 4, I.A. Bratchenko 4

School of Safety Engineering, Ningbo University of Technology,
China, Zhejiang, Ningbo, Jiangbei, Fenghua Rd. 201;
School of Computer Science, Ningbo University of Technology,
China, Zhejiang, Ningbo, Jiangbei, Fenghua Rd. 201;
Department of Ophthalmology, Ningbo First Hospital,
China, Zhejiang, Ningbo, Haishu, Liuting St. 59;
Department of Laser and Biotechnical Systems, Samara National Research University,
443086, Russia, Samara, Lukacheva St. 39B

 PDF, 1237 kB

DOI: 10.18287/2412-6179-CO-1261

Pages: 620-626.

Full text of article: English language.

Abstract:
In this study, the diagnostic abilities of intensity parameters of optical coherence tomography angiography (OCTA) images in the early detection of diabetic retinopathy (DR) were determined. 78 normal healthy eyes, 10 diabetic eyes with mild non-proliferative diabetic retinopathy (NPDR), and 10 diabetic eyes with moderate NPDR were employed. Four retinal vascular plexuses were generated by using OCTA, which included the nerve fiber layer vascular plexus (NFLVP), superficial vascular plexus (SVP), intermediate capillary plexus (ICP) and deep capillary plexus (DCP). The parafoveal zone in each OCTA image was divided into four sectors which were the superior, temporal, inferior, and nasal sectors. Five intensity parameters including the mean, median, variance, skewness, and kurtosis of intensities were calculated for each sector. The factor of aging was evaluated among normal healthy subgroups. The diagnostic abilities of intensity parameters were evaluated between normal healthy subjects and diabetic patients with DR. Our results showed that the variance of intensities in superior sector in ICP achieved the highest AUROC value of 0.95 with the sensitivity of 0.87 and the specificity of 1.000 when comparing the diabetic patients with the mild NPDR to normal healthy subjects. The mean intensity in superior sector in ICP achieved the second highest AUROC value of 0.95 with the sensitivity of 0.90 and the specificity of 0.90 when comparing the diabetic patients with the moderate NPDR to normal healthy subjects. The proposed approach could offer a simple way to differentiate diabetic patients with early DR from normal healthy subjects without performing the relatively complicated image processing techniques.

Keywords:
diabetic retinopathy, optical coherence tomography angiography, intensity, variance.

Citation:
Hou J, Shi H, Gao W, Lin P, Li B, Shi Y, Matveeva I, Zakharov V, Bratchenko I. The preliminary study of diabetic retinopathy detection based on intensity parameters with optical coherence tomography angiography. Computer Optics 2023; 47 (4): 620-626. DOI: 10.18287/2412-6179-CO-1261.

Acknowledgements:
This study was supported by Zhejiang Provincial Natural Science Foundation (LY20H180009), Qianjiang Talent Plan (QJD1803009), Ningbo Science and Technology Service Industry Demonstration Project (2020F031), Zhejiang Provincial Traditional Chinese Medicine Science and Technology Project (2023ZL647), and Ministry of Science and Higher Education of the Russian Federation as part of the Program for increasing the competitiveness of Samara University among the world's leading research and educational centers for 2013–2020.

References:

  1. International Diabetes Federation. IDF diabetes atlas, 10th ed. Brussels, Belgium: 2021. Source: <https://www.diabetesatlas.org>.
  2. Selph S, Dana T, Bougatsos C, Blazina I, Patel H, Chou R. Screening for abnormal glucose and Type 2 diabetes mellitus: A systematic review to update the 2008 U.S. Preventive Services Task Force recommendation [Internet]. Report No 13-05190-EF-1. Rockville (MD): Agency for Healthcare Research and Quality (US); 2015. PMID: 25973510.
  3. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010; 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3.
  4. Wong TY, Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: From epidemiology to artificial intelligence. Ophthalmologica 2020; 243(1): 9-20. DOI: 10.1159/000502387. PMID: 31408872.
  5. Lee VS, Kingsley RM, Lee ET, Lu M, Russell D, Asal NR, Bradford RH Jr, Wilkinson CP. The diagnosis of diabetic retinopathy. Ophthalmoscopy versus fundus photography. Ophthalmology 1993; 100(10): 1504-1512. DOI: 10.1016/s0161-6420(93)31449-1. PMID: 8414411.
  6. Enders C, Baeuerle F, Lang GE, Dreyhaupt J, Lang GK, Loidl M, Werner JU. Comparison between findings in optical coherence tomography angiography and in fluorescein angiography in patients with diabetic retinopathy. Ophthalmologica 2020; 243(1): 21-26. DOI: 10.1159/000499114. PMID: 31137028.
  7. de Barros Garcia JMB, Isaac DLC, Avila M. Diabetic retinopathy and OCT angiography: clinical findings and future perspectives. Int J Retina Vitreous 2017; 3: 14. DOI: 10.1186/s40942-017-0062-2. PMID: 28293432. PMCID: PMC5346852.
  8. Corcóstegui B, Durán S, González-Albarrán MO, et al. Update on diagnosis and treatment of diabetic retinopathy: A consensus guideline of the working group of ocular health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society). J Ophthalmol 2017; 2017: 8234186.
  9. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A. Optical coherence tomography angiography in diabetic retinopathy: A prospective pilot study. Am J Ophthalmol 2015; 160(1): 35-44.e1. DOI: 10.1016/j.ajo.2015.04.021. PMID: 25896459.
  10. Fukuda Y, Nakao S, Kaizu Y, Arima M, Shimokawa S, Wada I, Yamaguchi M, Takeda A, Sonoda KH. Morphology and fluorescein leakage in diabetic retinal microaneurysms: a study using multiple en face OCT angiography image averaging. Graefes Arch Clin Exp Ophthalmol 2022; 260(11): 3517-3523. DOI: 10.1007/s00417-022-05713-7. PMID: 35665851.
  11. Thompson IA, Durrani AK, Patel S. Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy. Eye (Lond) 2019; 33(4): 648-652. DOI: 10.1038/s41433-018-0286-x. PMID: 30510234. PMCID: PMC6461750.
  12. Gildea D. The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review. Int Ophthalmol 2019; 39(10): 2413-2433. DOI: 10.1007/s10792-018-1034-8. PMID: 30382465.
  13. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015; 35(11): 2377-2383. DOI: 10.1097/IAE.0000000000000849. PMID: 26457396.
  14. Al-Sheikh M, Akil H, Pfau M, Sadda SR. Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy. Invest Ophthalmol Vis Sci 2016; 57(8): 3907-3913. DOI: 10.1167/iovs.16-19570. PMID: 27472076.
  15. Ragkousis A, Kozobolis V, Kabanarou S, Bontzos G, Mangouritsas G, Heliopoulos I, Chatziralli I. Vessel density around foveal avascular zone as a potential imaging biomarker for detecting preclinical diabetic retinopathy: An optical coherence tomography angiography study. Semin Ophthalmol 2020; 35(5-6): 316-323. DOI: 10.1080/08820538.2020.1845386. PMID: 33258720.
  16. Xie N, Tan Y, Liu S, Xie Y, Shuai S, Wang W, Huang W. Macular vessel density in diabetes and diabetic retinopathy with swept-source optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2020; 258(12): 2671-2679. DOI: 10.1007/s00417-020-04832-3. PMID: 32661699.
  17. Lavia C, Couturier A, Erginay A, Dupas B, Tadayoni R, Gaudric A. Reduced vessel density in the superficial and deep plexuses in diabetic retinopathy is associated with structural changes in corresponding retinal layers. PLoS One 2019; 14(7): e0219164. DOI: 10.1371/journal.pone.0219164. PMID: 31318880. PMCID: PMC6638849.
  18. Zahid S, Dolz-Marco R, Freund KB, Balaratnasingam C, Dansingani K, Gilani F, Mehta N, Young E, Klifto MR, Chae B, Yannuzzi LA, Young JA. Fractal dimensional analysis of optical coherence tomography angiography in eyes with diabetic retinopathy. Invest Ophthalmol Vis Sci 2016; 57(11): 4940-4947. DOI: 10.1167/iovs.16-19656. PMID: 27654421.
  19. Chen Q, Ma Q, Wu C, Tan F, Chen F, Wu Q, Zhou R, Zhuang X, Lu F, Qu J, Shen M. Macular vascular fractal dimension in the deep capillary layer as an early indicator of microvascular loss for retinopathy in type 2 diabetic patients. Invest Ophthalmol Vis Sci 2017; 58(9): 3785-3794. DOI: 10.1167/iovs.17-21461. PMID: 28744552.
  20. Sun Z, Tang F, Wong R, Lok J, Szeto SKH, Chan JCK, Chan CKM, Tham CC, Ng DS, Cheung CY. OCT angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study. Ophthalmology 2019; 126(12): 1675-1684. DOI: 10.1016/j.ophtha.2019.06.016. Erratum in: Ophthalmology 2020; 127(12): 1777. PMID: 31358386.
  21. Gao W, Tátrai E, Ölvedy V, Varga B, Laurik L, Somogyi A, Somfai G, DeBuc D. Investigation of changes in thickness and reflectivity from layered retinal structures of healthy and diabetic eyes with optical coherence tomography. J Biomed Sci Eng 2011; 4: 657-665. DOI: 10.4236/jbise.2011.410082.
  22. Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003; 110(9): 1677-1682. DOI:10.1016/S0161-6420(03)00475-5.
  23. Rocholz R, Teussink MM, Dolz-Marco R, et al. SPECTRALIS optical coherence tomography angiography (OCTA): principles and clinical applications. Heidelberg, Germany: Heidelberg Engineering Academy; 2018. Source: <https://www.heidelbergengineering.com/media/e-learning/Totara/Dateien/pdf-tutorials/210111-001_SPECTRALIS%20OCTA%20-%20Principles%20and%20Clinical%20Applications_EN.pdf>.
  24. Gao W, DeBuc DC, Zakharov VP, et al. Two-dimensional fractal analysis of retinal tissue of healthy and diabetic eyes with optical coherence tomography. J Biomed Photonics Eng 2016; 2: 040302.
  25. Mastropasqua R, Toto L, Mastropasqua A, Aloia R, De Nicola C, Mattei PA, Di Marzio G, Di Nicola M, Di Antonio L. Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography. Int J Ophthalmol 2017; 10(10): 1545-1551. DOI: 10.18240/ijo.2017.10.11. PMID: 29062774. PMCID: PMC5638976.
  26. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013; 4(2): 627-635. PMID: 24009950. PMCID: PMC3755824.
  27. Unal I. Defining an optimal cut-point value in ROC analysis: An alternative approach. Comput Math Methods Med 2017; 2017: 3762651. DOI: 10.1155/2017/3762651. PMID: 28642804. PMCID: PMC5470053.
  28. Coscas G, Lupidi M, Coscas F. Heidelberg spectralis optical coherence tomography angiography: Technical aspects. Dev Ophthalmol 2016; 56: 1-5. DOI: 10.1159/000442768. PMID: 27022921.
  29. Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS, Zhou Q, Ko T, Rosen RB. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 2015; 35(11): 2353-2363. DOI: 10.1097/IAE.0000000000000862. PMID: 26465617.
  30. Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina 2016; 36(11): 2039-2050. DOI: 10.1097/IAE.0000000000001077. PMID: 27205895. PMCID: PMC5077697.
  31. Tan PE, Yu PK, Balaratnasingam C, Cringle SJ, Morgan WH, McAllister IL, Yu DY. Quantitative confocal imaging of the retinal microvasculature in the human retina. Invest Ophthalmol Vis Sci 2012; 53(9): 5728-5736. DOI: 10.1167/iovs.12-10017. PMID: 22836777.
  32. Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res 2001; 20(6): 799-821. DOI: 10.1016/s1350-9462(01)00012-x. PMID: 11587918.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20