(47-5) 17 * << * >> * Russian * English * Content * All Issues

Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images
N.S. Demin 1,2, N.Y. Ilyasova 1,2, R.A. Paringer 1,2, D.V. Kirsh 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 966 kB

DOI: 10.18287/2412-6179-CO-1283

Pages: 824-831.

Full text of article: Russian language.

Abstract:
The paper presents main aspects of the application of artificial intelligence in ophthalmology for the diagnosis and treatment of eye diseases, considering the problem of semantic segmentation of fundus images as an example. The classic approach to semantic segmentation on the basis of textural features is compared to the proposed approach based on neural networks. Basic problems of using the neural network approach in biomedicine are formulated. We propose a new method for selecting an optimal zone of laser exposure for laser coagulation based on two neural networks. The first network is used for detecting anatomical objects in the fundus and the second one is used for selecting the area of macular edema. The region of interest is formed from the edema area while taking into account the location of anatomical objects in it. A comparative analysis of sev-eral architectures of neural networks for solving the problem of selecting the edema area is carried out. The best results in the selection of the edema area are shown by the neural network architecture of Unet++.

Keywords:
fundus image, laser coagulation, diabetic retinopathy, image processing, segmentation, neural network, artificial intelligence.

Citation:
Demin NS, Ilyasova NY, Paringer RA, Kirsh DV. Application of artificial intelligence in ophthalmology for solving the problem of semantic segmentation of fundus images. Computer Optics 2023; 47(5): 824-831. DOI: 10.18287/2412-6179-CO-1283.

Acknowledgements:
This work was funded by the Russian Foundation for Basic Research under RFBR grant # 19-29-01135 and the Ministry of Science and Higher Education of the Russian Federation within a government project of FSRC “Crystallography and Photonics” RAS.

References:

  1. Rottier JB. Artificial intelligence: reinforcing the place of humans in our healthcare system. La Revue du Praticien 2018; 68(10): 1150-1151.
  2. Fourcade A, Khonsari RH. Deep learning in medical image analysis: A third eye for doctors. J Stomatol Oral Maxillofac Surg 2019; 120(4): 279-288.
  3. Gao A, et al. Progress in robotics for combating infectious diseases. Sci Robot 2021; 6(52): eabf1462.
  4. Forecast of scientific and technological development of the Russian Federation until 2030. Source: <http://static.government.ru/media/files/41d4b737638b91da2184.pdf>.
  5. Trinh M, Ghassibi M, Lieberman R. Artificial intelligence in retina. Adv Ophthalmol Optom 2021; 6: 175-185.
  6. Vorobieva IV, Merkushenkova DA. Diabetic retinopathy in patients with type 2 Diabetes Mellitus. Epidemiology, a modern view of pathogenesis. Ophthalmology 2012; 9(4): 18-21.
  7. Dedov II, Shestakova MV, Galstyan GR. Prevalence of type 2 Diabetes Mellitus in the adult population of Russia (NATION study). Diabetes Mellit 2016; 19(2): 104-112.
  8. Tan GS, Cheung N, Simo R. Diabetic macular edema. Lancet Diab Endoc 2017; 5: 143-155.
  9. Amirov АN, Abdulaeva EА, Minkhuzina EL. Diabetic macular edema: Epidemiology, pathogenesis, diagnosis, clinical presentation, and treatment. Kazan Medical Journal 2015; 96(1): 70-74.
  10. Doga AV, Kachalina GF, Pedanova EK, Buryakov DA. Modern diagnostic and treatment aspects of diabetic macular edema. Ophthalmology Diabetes 2014; 4: 51-59.
  11. Bratko GV, Chernykh VV, Sazonova ОV. On early diagnostics and the occurence rate of diabetic macular edema and identification of diabetes risk groups. Siberian Scientific Medical Journal 2015; 35(1): 33-36.
  12. Wong TY, Liew G, Tapp RJ. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet 2008; 371(9614): 736-743.
  13. Acharya UR, Ng EY, Tan JH, Sree SV, Ng KH. An integrated index for the identification of diabetic retinopathy stages using texture parameters. J Med Syst 2012; 36(3): 2011-2020.
  14. Astakhov YuS, Shadrichev FE, Krasavina MI, Grigorieva NN. Modern approaches to the treatment of diabetic macular edema. Ophthalmological Statements 2009; 4: 59-69.
  15. Zamytsky EA, Zolotarev AV, Karlova EV, Zamytsky PA. Analysis of the coagulates intensity in laser treatment of diabetic macular edema in a Navilas robotic laser system. Saratov Journal of Medical Scientific Research 2017; 13(2): 375-378.
  16. Zamytskiy EA, Zolotarev AV, Karlova EV. Comparative quantitative assessment of the placement and intensity of laser spots for treating diabetic macular edema. Russian Journal of Clinical Ophthalmology 2021; 21(2): 58-62.
  17. Kotsur TV, Izmailov AS. The effectiveness of laser coagulation in the macula and high-density microphotocoagulation in the treatment of diabetic maculopathy. Ophthalmological Statements 2016; 9(4): 43-45.
  18. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011; 94: 311-321.
  19. Shirokanev AS, Kirsh DV, Ilyasova NYu, Kupriyanov AV. Investigation of algorithms for coagulate arrangement in fundus images. Computer Optics 2018; 42(4): 712-721. DOI: 10.18287/2412-6179-2018-42-4-712-721.
  20. Ilyasova NYu, Demin NS, Shirokanev AS, Kupriyanov AV, Zamytskiy EA. Method for selection macular edema region using optical coherence tomography data. Computer Optics 2020; 44(2): 250-258. DOI: 10.18287/2412-6179-CO-691.
  21. Ilyasova NYu, Shirokanev AS, Kupriyanov AV, Paringer RA. Technology of intellectual feature selection for a system of automatic formation of a coagulate plan on retina. Computer Optics 2019; 43(2): 304-315. DOI: 10.18287/2412-6179-2019-43-2-304-315.
  22. Kozak I, Luttrull J. Modern retinal laser therapy. Saudi J Ophthalmol 2014; 29(2): 137-146.
  23. Chhablani J, Mathai A, Rani P, Gupta V, Arevalo JF, Kozak I. Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy. Investig Ophthalmol Vis Sci 2014; 55: 3432-3438.
  24. Ilyasova N, Paringer R, Kupriyanov A, Kirsh D. Intelligent feature selection technique for segmentation of fundus images. 2017 Seventh Int Conf on Innovative Computing Technology (INTECH) 2017: 138-143. DOI: 10.1109/INTECH.2017.8102433.
  25. MaZda Web Site. Source: <http://www.eletel.p.lodz.pl/programy/mazda/index.php>.
  26. Wu J, Poehlman S, Noseworthy MD, V. Kamath M. Texture feature based automated seeded region growing in abdominal MRI segmentation. J Biomed Sci Eng 2009; 02(01): 263-267. DOI:10.1109/BMEI.2008.352.
  27. Gabbasov R, Paringer R. Influence of the receptive field size on accuracy and performance of a Convolutional Neural Network. 2020 Int Conf on Information Technology and Nanotechnology (ITNT) 2020: 1-4. DOI: 10.1109/ITNT49337.2020.9253219.
  28. Arellano AM, Dai W, Wang S, Jiang X, Ohno-Machado L. Privacy policy and technology in biomedical data science. Annu Rev Biomed Data Sci 2018; 1: 115-129.
  29. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for Deep Learning. J Big Data 2019; 6(1): 60.
  30. Castro E, Cardoso JS, Pereira JC. Elastic deformations for data augmentation in breast cancer mass detection. 2018 IEEE EMBS Int Conf on Biomedical and Health Informatics (BHI) 2018: 230-344.
  31. Ishwaran H, O'Brien R. Commentary: The problem of class imbalance in biomedical data. J Thorac Cardiovasc Surg 2021; 161(6): 1940-1941.
  32. Charte F, Rivera AJ, del Jesus MJ, Herrera F. MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation. Knowl Based Syst 2015; 89: 385-397.
  33. Pereira RM, Costa YMG, Silla Jr. CN. MLTL: A multi-label approach for the Tomek link undersampling algorithm. Neurocomputing 2020; 383: 95-105.
  34. Mukhin A, Kilbas I, Paringer R, Ilyasova N. Application of the gradient descent for data balancing in diagnostic image analysis problems. 2020 Int Conf on Information Technology and Nanotechnology (ITNT) 2020: 1-4. DOI: 10.1109/ITNT49337.2020.9253278.
  35. Hao D, Zhang L, Sumkin J, Mohamed A, Wu S. Inaccurate labels in weakly-supervised deep learning: Automatic identification and correction and their impact on classification performance. IEEE J Biomed Health Inform 2020; 24(9): 2701-2710.
  36. Paringer RA, Mukhin AV, Ilyasova NY, Demin NS. Neural network application for semantic segmentation of fundus. Computer Optics 2022; 46(4): 596-602. DOI: 10.18287/2412-6179-CO-1010.
  37. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Int Conf on Medical Image Computing and Computer-Assisted Intervention 2015: 234-241.
  38. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition 2016: 770-778.
  39. Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K. Densenet: Implementing efficient convnet descriptor pyramids. arXiv Preprint. 2014. Source: <https://arxiv.org/abs/1404.1869>.
  40. Chollet F. Xception: Deep learning with depthwise separable convolutions. Proc IEEE Conf on Computer Vision and Pattern Recognition 2017: 1251-1258.
  41. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012; 25: 1097-1105.
  42. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. UNet++: A nested U-Net architecture for medical image segmentation. In Book: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS, Bradley A, Papa JP, Belagiannis V, Nascimento JC, Lu Z, Conjeti S, Moradi M, Greenspan H, Madabhushi A, eds. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer Nature Switzerland AG; 2018: 3-11.
  43. Fan T, Wang G, Li Y, Wang H. MA-Net: A multi-scale attention network for liver and tumor segmentation. IEEE Access 2020; 8: 179656-179665.
  44. Chaurasia A, Culurciello E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. 2017 IEEE Visual Communications and Image Processing (VCIP) 2017: 1-4.
  45. Lin T-Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR) 2017: 936-944. DOI: 10.1109/cvpr.2017.106.
  46. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR) 2017: 2881-2890.
  47. Li H, Xiong P, An J, Wang L. Pyramid Attention Network for semantic segmentation. arXiv Preprint. 2018. Source: <https://arxiv.org/abs/1805.10180>.
  48. Chen L-C, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for Semantic Image segmentation. arXiv Preprint. 2017. Source: <https://arxiv.org/abs/1706.05587>.
  49. Ma Y-d, Liu Q, Quan Z-b. Automated image segmentation using improved PCNN model based on cross-entropy. Proc 2004 Int Symposium on Intelligent Multimedia, Video and Speech Processing 2004: 743-746.
  50. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv Preprint. 2014. Source: <https://arxiv.org/abs/1412.6980>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20