(48-1) 02 * << * >> * Russian * English * Content * All Issues

Spin-orbit interaction in quasi-monochromatic singular beams
Y.A. Egorov 1, A.F. Rubass 1

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
295007, Simferopol, Republic of Crimea, Russia, Academician Vernadsky 4

 PDF, 1065 kB

DOI: 10.18287/2412-6179-CO-1318

Pages: 18-25.

Full text of article: Russian language.

Abstract:
It is shown that the magnitude of the spin-orbit coupling is the energy efficiency of energy transfer between orthogonally polarized beam components. The energy efficiency changes as the Gaussian beam propagates through the anisotropic crystal. For a fundamental Gaussian beam, the energy efficiency cannot exceed 50%, and for elegant Hermite-Gaussian and Laguerre-Gaussian beams of higher orders, the energy efficiency can reach a value close to 100%. At the same time, for ordinary higher-order Hermite-Gaussian and Laguerre-Gaussian mode beams, the energy efficiency can only slightly exceed 50%. It is shown that zero-order Bessel-Gaussian beams are capable of achieving an energy efficiency close to 100% when an axial optical vortex is generated in the orthogonally polarized beam component when passing through an anisotropic medium, in both monochromatic and polychromatic light. It is shown that for elegant polychromatic Laguerre-Gaussian or Hermite-Gaussian beams, the energy efficiency is reduced to a value not exceeding 50%. The spin moment is compensated by a change in the orbital momentum of the entire beam, which occurs as a result of the difference in topological charge (TC) in the orthogonally polarized components by 2 units.

Keywords:
structural stability, topological charge, orbital angular momentum, vortex spectrum.

Citation:
Egorov YA, Rubass AF. Spin-orbit interaction in quasi-monochromatic singular beams. Computer Optics 2024; 48(1): 18-25. DOI: 10.18287/2412-6179-CO-1318.

References:

  1. Berry MV, Klein S. Colored diffraction catastrophes. Proc Natl Acad Sci USA 1996; 93: 2614-2619. DOI: 10.1073/pnas.93.6.2614.
  2. Nye JF. Natural focusing and fine structure of light: Caustics and wave. Bristol, UK: Institute of Physics Publishing; 1999: 328.
  3. Berry MV. Coloured phase singularities. New J Phys 2002; 4: 66. DOI: 10.1088/1367-2630/4/1/366.
  4. Berry MV. Exploring the colours of dark light. New J Phys 2002; 4: 74. DOI: 10.1088/1367-2630/4/1/374.
  5. Angelsky OV, Polyanskii PV, Hanson SG. Singular-optical coloring of regularly scattered white light. Opt Express 2006; 14: 7579-7586. DOI: 10.1364/OE.14.007579.
  6. Angelsky OV, Maksimyak AP, Maksimyak PP. Interference diagnostic of white-light vortices. Opt Express 2005; 13: 8179-8183. DOI: 10.1364/OPEX.13.008179.
  7. Angelsky OV, Hanson SG, Maksimyak AP, Maksimyak PP. On the feasibility for determining the amplitude zeroes in polychromatic fields. Opt Express 2005; 13: 4396-4405. DOI: 10.1364/OPEX.13.004396.
  8. Soifer VA, Golub MA. Laser beam mode selection by computer-generated holograms; Boca Raton, FL: USACRC Press; 1994. ISBN: 978-0-8493-2476-5.
  9. Basistiy IV, Bazhenov VYu, Soskin MS, Vasnetsov MV. Optics of light beams with screw dislocations. Opt Commun 1993; 103: 422-428. DOI: 10.1016/0030-4018(93)90168-5.
  10. Bryngdahl O. Radial- and circular-fringe interferograms. J Opt Soc Am 1973; 63: 1098-1104. DOI: 10.1364/JOSA.63.001098.
  11. Beijersbergen MW, Coerwinkel RPC, Kristensen M, Woerdman JP. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun 1994; 112: 321-327. DOI: 10.1016/0030-4018(94)90638-6.
  12. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton, FL: CRC Press; 2018. DOI: 10.1201/9781351009607.
  13. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A Pure Appl Opt 2004; 6: 259-268. DOI: 10.1364/AO.43.000688.
  14. Kotlyar VV, Kovalev AA, Kalinkina DS, Kozlova ES. Fourier-Bessel beams of finite energy. Computer Optics 2021; 45(4): 506-511. DOI: 10.18287/2412-6179-CO-864.
  15. Egorov YuA, Fadeyeva TA, Volyar AV. The fine structure of singular beams in crystals: colours and polarization. J Opt A Pure Appl Opt 2004; 6(5): S217-S228. DOI: 10.1088/1464-4258/6/5/014.
  16. Volyar AV, Egorov YA, Rubass AF, Fadeeva TA. Fine structure of white optical vortices in crystals. Tech Phys Lett 2004; 30: 701-704. DOI: 10.1134/1.1792318.
  17. Volyar AV, Egorov YA, Rubass AF, Fadeeva TA. Fine structure of optical vortices in a crystal: A monochromatic singular beam. Tech Phys Lett 2004; 49(12): 1627-1630. DOI: 10.1134/1.1841415.
  18. Leach J, Padgett MJ. Observation of chromatic effects near a white-light vortex. New J Phys 2003; 5: 154.1-154.7. DOI: 10.1088/1367-2630/5/1/154.
  19. Soskin MS, Polyansky PV, Arkheluyk OO. Computer-synthesized hologram-based rainbow vortices. New J Phys 2004; 6: 196.1-196.6. DOI: 10.1088/1367-2630/6/1/196.
  20. Shvedov VG, Izdebskaya YV, Rode AV, Desyatnikov A, Krolikowski W, Kivshar YS. Generation of optical bottle beams by incoherent white-light vortices. Opt Express 2008; 16: 20902-20907. DOI: 10.1364/OE.16.020902.
  21. Brasselet E, Izdebskaya Y, Shvedov V, Desyatnikov AS, Krolikowski W, Kivshar YS. Dynamics of optical spin-orbit coupling in uniaxial crystals. Opt Lett 2009; 34: 1021-1023. DOI: 10.1364/OL.34.001021.
  22. Izdebskaya Y, Brasselet E, Shvedov V, Desyatnikov AS, Krolikowski W, Kivshar YS. Dynamics of linear polarization conversion in uniaxial crystals. Opt Express 2009; 17: 18196-18208. DOI: 10.1364/OE.17.018196.
  23. Kotlyar VV, Kovalev AA, Nalimov AG, Stafeev SS. Topological charge of multi-color optical vortices. Photonics 2022; 9: 145. DOI: 10.3390/photonics9030145.
  24. Egorov YA, Fadeeva TA, Rubass AF, Volyar AV. White optical vortices in LiNbO3 crystal. Proc SPIE 2004; 5582: 286-296. DOI: 10.1117/12.583458.
  25. Denisenko V, Shvedov V, Desyatnikov AS, Neshev DN, Krolikowski W, Volyar A, Soskin M, Kivshar YS. Determination of topological charges of polychromatic optical vortices. Opt Express 2009; 17: 23374-23379. DOI: 10.1364/OE.17.023374.
  26. Neshev DN, Dreischuh A, Shvedov V, Desyatnikov AS, Krolikowski W, Kivshar YS. Observation of polychromatic vortex solitons. Opt Lett 2008; 33: 1851-1853. DOI: 10.1364/OL.33.001851.
  27. Fischer P, Brown CTA, Morris JE, López-Mariscal C, Wright EM, Sibbett W, Dholakia K. White light propagation invariant beams. Opt Express 2005; 13: 6657-6666. DOI: 10.1364/OPEX.13.006657.
  28. Grunwald R, Bock M, Kebbel V, Huferath S, Neumann U, Steinmeyer G, Stibenz G, Néron JL, Piché M. Ultrashot-pulsed truncated polychromatic Bessel-Gauss beams. Opt Express 2008; 16, 1077-1089. DOI: 10.1364/OE.16.001077.
  29. Papasimakis N, Raybould T, Fedotov VA, Tsai DP, Youngs I, Zheludev NI. Pulse generation scheme for flying electromagnetic doughnuts. Phys Rev B 2018; 97: 201409(R). DOI: 10.1103/PhysRevB.97.201409.
  30. Shlarb U, Betzler K. Refractive indices of lithium niobate as a function of temperature, wavelength and composition: A generalized fit. Phys Rev B 1993; 48: 15613-15620. DOI: 10.1103/PhysRevB.48.15613.
  31. Ciattoni A, Cincotti G, Palma C. Circularly polarized beams and vortex generation in uniaxial media. J Opt Soc Am A 2003; 20: 163-171. DOI: 10.1364/JOSAA.20.000163.
  32. Volyar A, Shvedov V, Fadeyeva T, Desyatnikov AS, Neshev DN, Krolikowski W, Kivshar YS. Generation of single-charge optical vortices with an uniaxial crystal. Opt Express 2006; 14: 3724-3729. DOI: 10.1364/OE.14.003724
  33. Bliokh KY. Spatiotemporal vortex pulses: Angular momenta and spin-orbit interaction. Phys Rev Lett 2021; 126: 243601. DOI: 10.1103/PhysRevLett.126.243601.
  34. Born M, Wolf E. Principles of optics. 7th ed. New York: Cambridge University Press; 1999. DOI: 10.1017/CBO9781139644181.
  35. Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Opt Commun 1987; 64: 491-495. DOI: 10.1016/0030-4018(87)90276-8.
  36. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Avalanche instability of the orbital angular momentum higher order optical vortices. Computer Optics 2019; 43(1): 14-24. DOI: 10.18287/2412-6179-2019-43-1-14-24.
  37. Fadeyeva T, Egorov Yu, Rubass A, Swartzlander GA, Volyar A. Indistinguishability limit for off-axis vortex beams in uniaxial crystals. Opt Lett 2007; 32: 3116-3118. DOI: 10.1364/OL.32.003116.
  38. Volyar AV, Fadeeva TA, Egorov YuA. Vector singularities of Gaussian beams in uniaxial crystals: Optical vortex generation. Tech Phys Lett 2002; 28: 958-961. DOI: 10.1134/1.1526896.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20