(48-1) 17 * << * >> * Russian * English * Content * All Issues

Recognition of life-threatening arrhythmias by ECG scalograms
A.P. Nemirko 1, A.S. Ba Mahel 1, L.A. Manilo 1

Saint Petersburg Electrotechnical University "LETI",
197022, Russia, Saint Petersburg, Professor Popov 5

 PDF, 1589 kB

DOI: 10.18287/2412-6179-CO-1354

Pages: 149-156.

Full text of article: Russian language.

Abstract:
This work is devoted to the automatic classification of six classes of life-threatening arrhythmias using short ECG fragments of 2s-length. This task is extremely important for the detection of life-threatening arrhythmias with continuous monitoring. Especially dangerous are ventricular fibrillation and high-frequency heartbeat ventricular tachycardia. Timely detection of these dangerous disorders in the clinic allows doctors to effectively use electrical defibrillation, which saves the patient's life. A feature of our approach is the use of a unique technique for converting ECG signals into images (scalograms) using a continuous wavelet transform. For arrhythmia classification, the AlexNet neural network with a well-known deep learning architecture, which is commonly used in image classification tasks, is used. The experiments used data from the PhysioNet database, as well as synthesized ECG data obtained using the SMOTE method. The experimental results show that the proposed approach allows achieving an average accuracy of 98.7% for all classes, which exceeds the maximum accuracy estimates of 93.18% previously obtained by other researchers.

Keywords:
recognition of arrhythmias, deep neural networks, data synthesis, scalograms.

Citation:
Nemirko AP, Ba Mahel AS, Manilo LA. Recognition of life-threatening arrhythmias by ECG scalograms. Computer Optics 2024; 48(1): 149-156. DOI: 10.18287/2412-6179-CO-1354.

Acknowledgements:
This work was financially supported by the Russian Science Foundation under project No. 23-21-00215, https://rscf.ru/project/23-21-00215/.

References:

  1. Nemirko A, Manilo L, Tatarinova A, Alekseev B, Evdakova E. ECG Fragment Database for the Exploration of Dangerous Arrhythmia (version 1.0.0). PhysioNet 2022. Source: <https://physionet.org/content/ecg-fragment-high-risk-label/1.0.0/1_Dangerous_VFL_VF/>. DOI: 10.13026/kpfg-xs25.
  2. Pandit D, Li Z, Chengyu L, Chattopadhyay S, Aslam N, Peng LC. A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput Methods Programs Biomed 2017; 144: 61-75. DOI: 10.1016/j.cmpb.2017.02.028.
  3. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M, Tan RS. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl Intell 2019; 49(1): 16-27. DOI: 10.1007/s10489-018-1179-1.
  4. Haberl R, Jilge G, Pulter R, Steinbeck G. Spectral mapping of the electrocardiogram with Fourier transform for identification of patients with sustained ventricular tachycardia and coronary artery disease. Eur Heart J 1989; 10(4): 316-322.
  5. Tuncer T, Dogan S, Pławiak P, Acharya UR. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowledge-Based Systems 2019; 186: 104923. DOI: 10.1016/j.knosys.2019.104923.
  6. Madeiro JPV, Santos EMB, Cortez PC, Felix JHS, Schlindwein FS. Evaluating Gaussian and Rayleigh-based mathematical models for T and P-waves in ECG. IEEE Lat Am Trans 2017; 15(5): 843-853. DOI: 10.1109/TLA.2017.7910197.
  7. Kennedy A, Finlay DD, Guldenring D, Bond RR, Moran K, McLaughlin J. Automated detection of atrial fibrillation using RR intervals and multivariate-based classification. J Electrocardiol 2016; 49(6): 871-876. DOI: 10.1016/j.jelectrocard.2016.07.033.
  8. Nemirko AP, Popadina AO. Recognition of life-threatening arrhythmias by the spectral characteristics of a short electrocardiogram recording [In Russian]. Biotechnosfera 2022; 67(1): 3-8. DOI: 10.25960/bts.2022.1.3.
  9. Olanrewaju R, Ibrahim S, Asnawi AL, Altaf H. Classification of ECG signals for detection of arrhythmia and congestive heart failure based on continuous wavelet transform and deep neural networks. Indones J Electr Eng Comput Sci 2021; 22: 1520. SOI: 10.11591/ijeecs.v22.i3.pp1520-1528.
  10. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M, Tan RS. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl Intell 2019; 49(1): 16-27. DOI: 10.1007/s10489-018-1179-1.
  11. Byeon YH, Pan SB, Kwak KC. Intelligent deep models based on scalograms of electrocardiogram signals for biometrics. Sensors 2019; 19: 935. DOI: 10.3390/s19040935.
  12. Acharya UR, Fujita H, Oh SL, Raghavendra U, Tan JH, Adam M, Gertych A, Hagiwara Y. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Generation Computer Systems 2018; 79(3): 952-959. DOI: 10.1016/j.future.2017.08.039.
  13. Gupta V, Mittal M. QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. Journal of the Institution of Engineers (India): Series B 2019; 100(5): 489-497. DOI: 10.1007/s40031-019-00398-9.
  14. Wang T, Lu C, Sun Y, Yang M, Liu C, Ou C. Automatic ECG classification using continuous wavelet transform and convolutional neural network. Entropy (Basel) 2021; 23(1): 119. DOI: 10.3390/e23010119.
  15. Ba Mahel AS, Harold N, Solieman H. Arrhythmia classification using Alexnet model based on orthogonal leads and different time segments. 2022 Conf of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) 2022: 1312-1315. DOI: 10.1109/ElConRus54750.2022.9755708.
  16. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. smote: synthetic minority over-sampling technique. J Artif Intell Res 2002; 16: 321-357.
  17. Ozaltin O, Yeniay O. A novel proposed CNN–SVM architecture for ECG scalograms classification. Soft Comput 2023; 27: 4639-4658. DOI: 10.1007/s00500-022-07729-x.
  18. Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng 1995; 42(1): 21-28.
  19. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2012; 60(6): 84-90. DOI: 10.1145/3065386.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20