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Introduction 
It is known from experiments that intensity of the scat-
tered light in lateral lighting of the microstructured 
fiber (MF) is sensitive to its internal structure [1-4]. 
This opens up a new opportunity for nondestructive 
diffraction control of microstructured fiber param-
eters by measuring the angular distribution of the 
designated intensity S ( ) . Such control is important 
in manufacturing micro-structured tapers intended 
for frequency filters and optical sensors [2-6]. Study 
of lateral light diffraction on the microstructured fiber 
is also of interest due to the development of sensory 
elements in optical object-deformation sensors [7, 8] 
and the upgraded diffractive element media filling up 
internal micropores of the microstructured fiber [1]. 
Similar calculations may be also used to estimate ap-
plicability limits of dielectric permittivity models of 
composite media [9].
Searching of quantitative correspondence between 
microstructured fiber parameters and the distribution
S ( )  supposes the solution of the corresponding dif-
fraction problem. It is natural to use herein a model in 
which the microstructured fiber is represented by a set 
of a finite number of parallel cylinders enclosed in a 
shell with a restricted cross section [1-7].
Various methods of calculation of optical fields have 
been proposed so far scattered with parallel dielectric 
cylinder systems possessing (see [10, 12-14, 16, 17]) 
or, more generally, not possessing (see [11, 15, 18]) the 
circular symmetry. These methods can be applied in 

situations when the cylinders are surrounded by the 
infinite homogeneous medium [10, 11, 14, 15, 18], im-
plemented in a semi-infinite substrate [17] or locat-
ed within a plane-parallel layer of a finite thickness 
[13, 16]. However, in order to solve a diffraction 
problem on searching S ( )  they are not applicable 
since they don’t enable to consider the light reflec-
tion from an external contour boundary of the mi-
crostructured fiber.
This paper proposes the method of diffraction field 
calculation free of the specified limitation. It allows 
calculate the function S ( )  being implemented in a 
far control area which is of interest for measuring in 
lateral lighting of the microstructured fiber with a lim-
ited light beam. The method represents a generalized 
approach developed in [18] when analyzing the eigen-
modes of the microstructured fibers. Feasibility of the 
method is validated herewith below in section 2. Sec-
tion 3 illustrates the internal convergence of the meth-
od and gives examples of computation of distributions
S ( )  being implemented in the microstructured fiber 
with different internal structures lighted with Gauss-
ian light beams. 

1. Method of calculation 
Let us consider the dielectric microstructured fiber 
oriented along its uniformity axis 0z . Its cross section 
is shown in Figure 1a. A curve line shows herein the 
fiber external boundary. It lies between circles with the 
radius A  and B A   . In the area B   lies the 
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а)    b) 

Fig.1. General view of the cross section of the considered microstructured fibers (а) 
and the cross section of the microstructured fiber with the hexagonal symmetry (b)

We show that the calculation of the scattered field in 
the far area can be reduced to the solution of D dif-
fraction problem.
Any Cartesian component F  of the scattered optical 
field in the homogenous area y B   can be represent-
ed with the integral below [18]
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Effective integration ranges according to the vari-
ables 1x  and 1z in (1) have the radius order of the 

exciting beamw . Therefore in the far area, i.e. when
 

2 2 2r x y z w     , y B  ,

k r   the equation (1), by means of the expansion 
R  in powers of 1x r/ , 1z r/ , B r/ , can be reduced 
to the following form
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Hereinafter we will have interest in the distribution of 
the far scattered field in the plane of beam incidence. 
In this case Eq. (2) can be simplified as follows:

homogenous medium with the relative dielectric per-
mittivity a . Inside of the fiber there are k cylinders of 
the composite (generally) section. The relative dielec-
tric permittivity of the internal area of the j -cylinder 
is equal to j  and it may depend on the transverse co-
ordinates. The cylinders are surrounded by a uniform 
sheath with its relative permittivity s . The value a  is 
supposed to be a real quantity, and j sand s  may be 
the complex values.
Assume that the microstructured fiber is lighted with 
a spatially limited monochromatic light beam with a 
time multiplier factor i texp( )  (hereinafter omitted). 
The beam falls normally with respect to the axis 0z .  
Under the plane of beam incidence we understand the 

plane 0z  . The beam axis makes an angle   with 
the coordinate axis 0y . The intensity of the scattered 
field is recorded by a matrix of photoelectric receiv-
ers  located when y L   and lying in the far area 
( 0 1k L  , where 0 0 0 02k       /  – is a vacu-
um wave number).
In the aforementioned description we have used a 
proper Cartesian coordinate system of the microstruc-
tured fiber 0xyz , global polar coordinates , , and lo-
cal polar coordinates j j ,  for each of the cylinders, 
as well as the Cartesian coordinate system of the inci-
dent beam 0x y z  , in which the axis 0y  coincides with 
the beam axis (Fig.1а).
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where 2 2x y    ,   – is the angle at a viewpoint 
(Fig.1а),
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In order to set 1 0F x Bˆ( , , )  , let us assume the electro-
magnetic field by Fourier integrals at z :
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Substituting Eq. (5) and (6) to Maxwell’s equations 
shall result to differential equations with respect to 
vectors’ components
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Since the microstructured fiber parameters do not de-
pend on z , these equations related to different   are 
considered to be independent. They formally coincide 
with equations (1.4.10) – (1.4.15) given in monograph 
[20] which describe mode fields of optical waveguides. 
When 0  , these equations shall correspond to 2D 
diffraction problem in which 0z  / , and instead 
of x y z E( , , )  and x y z H( , , ) , occur 0x y Ê( , , )  and

0x y Ĥ( , , ) , respectively. It follows therefrom that 
functions 1 0F x Bˆ( , , )  in form of (4) may be calculat-
ed as a result of solution of the given 2D problem in 
which excitation of the microstructured fiber is car-
ried out by the two-dimensional  beam with the field 

0x y Ê( , , ) , 0x y Ĥ( , , ) , connected with the field of the 
actual three-dimensional beam x y z E( , , ) , x y z H( , , )  
by Fourier transforms (7) and (8).
A two-dimensional analogue of (1) is [19]
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where R  is calculated for 1 0z  . Provided w  , 
y B  , 0 1k    (9) shall be reduced to the follow-

ing form:
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If compare Eq. (3) and (10), we can come to the con-
clusion that within small limits 1

0O k ( )
10 2 0aF x y ik F x y      ˆ( , , ) ( , , )  (11)

From Eq. (11) it follows that in order to find the 
distribution of the far scattered field in the plane 
of incidence on the microstructured fiber of the 
three-dimensional beam, it would be sufficient 
to calculate the similar field in the described D 
problem.
In D problem it would be possible to separately con-
sider ТМ ( 0zE ˆ , 0xH ˆ , 0yH ˆ ) and ТЕ ( 0zH ˆ ,

0xE ˆ , 0yE ˆ ) polarized waves [20].
Thus, ТМ polarized waves shall be governed by the 
following equation:
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Applying the Green’s theorem to Eq. (12) according to 
the scheme described in [19], it is possible to obtain 
the following integral equation: 
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in the remaining space. The shaded coordinates in 
(14) and (15) are determined according to the for-
mulas j j jx x b   cos , j j jy y b   sin  and 
x A  cos , y A  sin , where jx , jy  – are the 
coordinates of the center of the j  – cylinder.
In order to algebraize the equation (13) let us assume 
the field within the areas j jb   ( 1j k , ) and A   
by Fourier polynomials:
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where m  and n – are the reduction orders of Fourier’s 
series by the angular variables j  and  . After sub-
stituting (16) and (17) to (12) and after using orthog-
onality relations for exponents we come to ordinary 
differential equations:
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Let us assume that in the j -cylinder round the ori-
gin of coordinates a certain circle with the radius ja  
can be described, within the limits of which the dielec-
tric permittivity is constant (Fig.1а). According to Eq. 
(18), in this circle j j     , 1 1

j j
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 – is the Kronecker symbol. Then the system (18) is 
reduced to independent Bessel’s equations. Solutions 
of these equations are physically meaningful being 
regular when 0j  . Therefore within the range of 
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where 0j jk k  , J(...)– is the Bessel’s function, 
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( ) – are certain coefficients. Then the general solu-

tion of the system (18) can be equated as follows:
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In order to convert the function x y( , ) , we shall con-
sider that the field outside the fiber (area B  ) can 
be represented as follows [22]
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when 0a ak k  . The first sum in (28), where
2

1 0

0

2

i
z

a

H B B i d
D

J k B






    




 ( )

( )

ˆ ( cos , sin , )exp( )

( )
 (29)

describes the incident beam with the magnetic com-
ponent i

zH x y z( )( , , ) , and the second sum describes the 
field scattered by the microstructured fiber, where the 
coefficients 2D

( )  are to be determined.
Repeating the calculations similar to the above men-
tioned, we determine the following:

2

1

n n
l pl p

n p n

x y Z V D  
  

      ( )( ) ( )( , ) ( , )  (30)

when 1l   provided A  , and 2l   provided A  ,
1
0

1 1

0 5

0 5

l p l p
s s

l l p

V i k A k Z T A

Z Z R A


  

  

    
  

( ) ( ) ( )

( ) ( ) ( )

, ( )

. ( ) ( ) ,
 (31)

22 1l
s sZ l H k A l J k A     ( ) ( )( ) ( ) ( ) ( ) ,
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pR h   ( )( ) ( ) , pT e   ( )( ) ( ) ; h ( )  and e ( )  are 
calculated as the result of solving simultaneous equa-
tions (19) on the interval B[ , ]  under starting condi-
tions

22 1a ah B p J k B p H k B   
      

( )( ) ( ) ( ) ( ) ( )  (32)




2
0

1 1

2 2
1 1

2
2

1

a a
a

a a

k
e B p J k B J k B

k
p H k B H k B


  

 


     

    
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) .

 (33)

The equations (26) and (30) are written using the 
local polar coordinates for all cylinders and the 
global polar coordinates. However the Graph’s 
addition theorem [21] allows us to reduce each of 
these equations to any of the indicated coordinate 
systems. As the result of this, in the area A  , as 
well as in all cylinders areas, the equation (13) shall 
be reduced to the form

2 0
n

n

Z 


    ( )( , )  (34)

1 0
m

j j j
m

Z 


    ( )( , )  (35)

1 2

1
2

2

1

k m m
j j j

j
j m m
n

p p

p n

Z U C

V D

   
  

 
 

    



  

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( , )

,
 (36)
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2
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j j
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m m
l j l j l

l
l j m m
n n

pj j p

n n p

U C

Z U C

Z V D

  


  
  

  
  

  

   

  



  

  

( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

( , )

( , ) ,

 (37)

j( ) , j( )– are the global polar coordinates of origin 
of the local coordinate system of the j -cylinder, 

l j( ) ,
l j( ) – are the polar coordinates of origin of the local 

coordinate system of the j -cylinder in the coordinate 
system of the l -cylinder.
The functions 2Z  ( )( , )  in (34) and 1

j jZ  ( )( , )  in 
(35), related to different  , are linearly independent, 
therefore (34) and (35) are equivalent to the system of 
algebraic equations

0   ( n n   , ), 0j    ( 1j k m m   , , , )
with respect to the coefficients jC

( ) and 2D
( ) . In accor-

dance with (36), (37) this system takes the following 
form:

1

1

N n

n

M X K D   
 

  ( )  (38)

Here, provided 1 2 1k m   ( )

jX C  ( ) ,   
111

n
j j

n

K Z V   


    ( )( ) ( ) ( )( , ) ,

1 2 2

1 12

2 1

1

2 1 1

m
l j l j

j l j j l l
m
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j j
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M H k m

U Z U

H k m Z V
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 


    
 

        
 

      





( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

[ ( ) ]

( ) ( , )

[ ( ) ] ( , ) ,

whereas 2 1k m N   ( )
2X D  ( ) ,   

21K V    ( )
,

1 2

22

2 1

2 1 1

m
l l

l
m

M H k m Z U

H k m V

  




      

    

 ( ) ( )( ) ( )

( )

[ ( ) ] ( , )

[ ( ) ] ;
  ( ) ,   l   ( ) ,    ( ) ,    ( ) ,

2 1 2 1
2 1 1 2 1 1

x H k m x x m x m
H x k m x k m n

        
       
( ) [ ( ) ][ ( )( )]

[ ( ) ][ ( ) ],

1H x ( )  at 0x  , 0H x ( )  at 0x  ,
11 2 1 1x x m     ( ) int[( )( ) ] ,

int[...]  means a truncation.
In accordance with (28) and (38), calculation of the 
two-dimensional field scattered by the microstruc-
tured fiber is reduced to calculation of the coefficients

2D
( )  by the following formulas:

2 1
n

n

D S D  


 ( ) ( )
 (39)

 1
1

N

S M K
 



   (40)

where 1M   – is a matrix inverse to the matrix M  of 
the equation (38), 2 1 1k m n      ( ) .
When calculating the far diffractive field, we can use 
in (28) the asymptotic representation of Hankel func-
tions [21]

2 1

1
0

2
2 4

1

a a aH k k i k

O k






   
          

   
  

( )( ) ( ) exp

[ ( ) ],

whereas the far field of the incident beam  may be de-
scribed with the equation (10), when 0B  , i

zF H ( )ˆ ˆ .
Thus, omitting small 1

0O k ( )  and considering that
0 5      , , in the area of 0y   (Fig.1а), we 

obtain the following:
10 2z a aH x y i k ik f       ˆ ( , , ) ( ) exp( ) ( )  (41)

1
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a z
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n

k H x
f d x

ik x

D i


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
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
  



      





( )

( )

ˆcos ( , , )
( )

exp( sin )

exp[ ( )],

 (42)

where the field i
zH
( )  is set in the coordinate system 

0x y z  .
In the considered D problem we can formally de-
termine the far field intensity S  in the semi-space

0y  , beam powers per unit length sP
( ) and sP

( ) for 
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the emission scattered into semi-spaces 0y   and 
0y  , respectively, and the power per unit length for 

the incident beam iP  using the following formulas
21

0 2 a zS k Z k H
  ˆ( )  (43)

0 5

0 5
sP S d





 

  
,

( )

,

 (44)
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exp[ ( )]  (45)
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P d x d

k ik x
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,

ˆ ( , , )cos
,

exp( sin )
 (46)

when 0 0Z   / . In case when the microstructured 
fiber consists of the media with real-valued dielec-
tric permittivities, the equations (43) – (46) enable 
to control correctness of the solution (39) through 
testing the execution of the energy conservation law 

1s s iP P P  ( ) ( )( ) /  (see Section 2).
If microstructured fibers are excited by TM polarized 
Gaussian beams, then for the scattered light intensity 
registered by the matrix of photoelectric receivers   
in the plane 0z   from (11), when zF H , zF Hˆ ˆ , 
(41) and (43) we determine:

230
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2 2a
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k k Z
S S f

L k
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

cos
( ) cos ( )  (47)

In practically important case of the microstructured 
fiber excited with the focused Gaussian beam we have:
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 (48)

when 2 2 2
1 2ak k k    , C  – is an amplitude fac-

tor. Then under the actual experimental condition 
2 20 25 1ak w exp( , )  from (29), (42), (46), (48) we 

obtain:
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 (50)
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8 exp(0,5 sin )i
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k Z w
P C d

k w

 
 

   (51)

The case with TE polarized waves (the electric-field 
vector is directed along the axis 0z) may also be ana-

lyzed according to the above scheme. These waves are 
described by the following equation:

2 2
2
02 2

0zk E
x y

      
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ˆ ,

therefore the analogues of decompositions (16) – (19) 
are as follows:
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 (55)

The above remaining formulas obtained when analyz-
ing TM polarized waves remain practically unchanged. 
Among them some upgrades are only required for for-
mulas (28), (41) and (43), in which we must substitute

z zH Eˆ ˆ , the formulas (29), (42), (46) and (48), in 
which i i

z zH E( ) ( )ˆ ˆ  to be substituted, the formulas (22) 
and (25), in which 2

00 5 0 5j jk k k. / . to be substitut-
ed, the formula (33), in which 2

0 a ak k k/  to be sub-
stituted and the formulas (27), (31), when 1s  .
Besides, in (43) (45), (46), (47), (51) we have to 
change aZ k/  to ak Z/ .
The solution of Eq. (39), (40) has been determined 
when considering the microstructured fiber whose in-
ternal cylinders and external boundaries have a complex 
cross-section (Fig. 1). In general, the calculation of ma-
trix elements and absolute terms of the algebraic system 
(38) may be performed by numerical integration of the 
Cauchy problem (18) (or (54)), (24), (25) and (19) (or 
(55)), (32), (33) and may encounter no crucial difficul-
ties [19]. Calculations may be considerably simplified if 
the aforesaid cylinders and boundaries possess the cir-
cular symmetry. In this case, the solution of these prob-
lems can be analytically expressed through cylindrical 
functions. For example, if the cylinders have the circular 
cross-section and j  does not depend on j , we can set 

j ja b  ( 1j k , ), A B . Then j
jP b

( )( )  and j
jQ b

( )( )  
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in (27) will be equal to the right-hand sides of the equa-
tions (24) and (25), whereas  pR A

( )( )and pT A
( )( )  in (31) 

will be equal to the right-hand sides of the equations (32) 
and (33).  The further reduction of the solution occurs 
if the ports inside of the fiber are missing ( 0jb  , or 

j s    for all j ). In this case a scattering matrix S  
becomes diagonal and the solution (39) coincides with 
the known analytical solution of the electromagnetic 
wave diffraction problem on a homogeneous circular 
cylinder [22].

2. Numerical examples 
The accuracy of the solution (28), (39), (43)-(45), 
(47) is determined only by reduction orders of the 
Fourier series m  and n . Its intrinsic convergence may 
be illustrated as described below by diffraction calcu-
lation results of TE and TM polarized Gaussian beams 
on the microstructured fibers with the hexagonal sym-
metry (1b). We have considered silica microstructured 
fibers with the circular external boundary surrounded 
with air and having the inner cylinders of the circular 
cross section filled with air. We have used a geomet-
rical model of the microstructured fiber empirically 
identified in [6]. On condition that 

1

1
0 0s c cA A a A A A A


       

( ) ( )

the following correlations are to be fulfilled therein
1

0 0A A   , 1ja a j k ( , ) ,

1
c c ca A A A A A H A A


       

( )( ) ( ) ,

1 1 10 51 0 78 0 51 1cA A
     [( , ) , ][( , ) ] ,

where   – is a distance between centers of ad-
joining cylinders (Fig.1b), 0 , 0a , 0A  A ,  ,   
– are the  process invariables. Notice that provided

cA A , there occur blow-ups of the air ports with-
in the microstructured fiber [6]. Calculations have 
been performed for different A  and 0 5 5  ,  μm, 

0 1 4a  ,  μm, 0 62 5A  ,  μm, 25A   μm, 0 35  , , 
0 012  , , 56 88sA  ,  μm, 18 56cA  ,  μm, 5w   

μm, 0 0 6328  ,  μm, 1a j     ( 1j k , ), 
2,093243s   [6]. We have studied the microstruc-

tured fiber in which the fiber geometric center, with 
no air gate available, is surrounded by four hexagonal 
rings of the air ports (Fig. 1b). The angle  , which 
characterizes the orientation of the beam axis in re-
spect to the coordinate system of the microstructured 
fiber (Fig.1а), has been selected equal to 0.
The table and Figure 2 below illustrate the intrin-
sic convergence of the method. They correspond to 
excitation of the microstructured fiber with 35A   
μm ( 3 080  , μm, 0 583a  ,  μm) by TE polarized 
Gaussian beams.

Table. Power balance in particular reduction orders 
of the Fourier’s series m  and n

№ m n s s iP P P ( ) ( )( ) /

1 0 100 0.95359
2 2 120 0.93039
3 4 140 0.96345
4 6 160 0.96185
5 8 180 0.99870
6 10 200 1.00000
7 12 220 1.00000
8 14 240 1.00000

Fig.2. S ( )  for different reduction orders. Numbers 
of curve lines correspond to numbers of rows 
in the above table; the curve lines with numbers 6, 7, 8 coin-
cide within the scale of the figure 

It can be seen from the above data that almost one-hun-
dred-percent solution convergence is observed in the 
reduction orders 10m  , 200n  . It should be also 
noted that the required number of Fourier’s harmon-
ics in field representations (53) outside of the fiber 
exceeds the number of similar harmonics in similar 
field representations (52) in internal cylinders by more 
than one order. This means that in the aforementioned 
method, as in the well-known electromagnetic field 
diffraction theory on the homogeneous cylinder (see. 
[22]), the main factor affecting the scope of compu-
tations is to provide a proper description of a rapidly 
oscillating field of the incident wave at the external 
boundary of the microstructured fiber by cylindrical 
harmonics. When exciting the microstructured fiber 
by the plane wave, the estimate 0n k A  [22] occurs. 
In the considered example we have 0 350k A  , and the 



Diffractive optics, Opto-IT

Sotsky A.B. et al… COMPUTER OPTICS, 2014: 38(1), 11-19

18

The curves in Fig. 3a and 4a correspond to the re-
duction orders 10n  , 200m  , and the curves in 
Fig. 3b and 4b – to 200m   regardless of n . As 
seen from Fig. 3 and 4, the distributions S ( )  being 
implemented when using the exciting ТЕ and ТМ 
polarized Gaussian beams are similar ones. In both 
cases the blow-up of the air ports inside of the mi-
crostructured fiber results to high-quality resetting 

of distributions data. We can also conclude from 
Fig. 3 and 4 that if the air ports inside of the micro-
structured fiber have subwave lateral dimensions, 
then in order to provide their diffractive control the 
measurements of S ( )  are required within the wide 
range of angles (in the considered examples we can 
perceive considerable influence of such air ports on 
the distribution S ( )  when 0 25  , rad).

а)  b) 

Fig.3. Distributions S ( )when exciting the microstructured fiber with 19A   μm ( 1 672  , μm, 0 089a  ,  μm) 
(а) and 18A   μm ( 1 584  , μm, 0a   μm) (b) by ТЕ polarized Gaussian beam 

а)  b) 
Fig.4. Distributions S ( )when exciting the microstructured fiber with 19A  μm ( 1 672  , μm, 0 089a  ,  μm) (а) 

and 18A  μm ( 1 584  , μm, 0a   μm) (b) by ТM polarized Gaussian beam 

inequation 200n   (see the above table) may be 
explained with the fact that the incident Gauss-
ian-beam field distribution on the external bound-
ary of the microstructured fiber proves to be more 

slanting if compared with the incident plane-wave field.
In Fig. 3 and 4 the distributions S ( ) are compared for 
cases when the radius A  is close to cA .
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Conclusion 
The angular distribution calculation of the far scat-
tered-field intensity within the plane of incidence of 
the three-dimensional beam to the microstructured 
fiber in lateral light can be reduced to consideration 
of 2D diffraction problem. In order to solve the latter 
problem we have proposed the method based on the 
Green’s theorem and the Graph’s addition theorem. 
The method is simple enough in its numerical imple-
mentation and can be used for nondestructive dif-
fraction control of microstructured fiber parameters. 
Its application has been illustrated with examples of 
construction of diffractive fields arising at excitation 
of the microstructured fibers by TE and TM polarized 
Gaussian beams.
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