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Introduction
Geographic information systems are now widely used 
to maintain current base map data at any resolution us-
ing various data sources. As a result, databases of geo-
graphic information systems contain large amounts of 
graphic and semantic information, which can be used 
as data for many applications, including the data analy-
sis of the Earth remote sensing (ERS). This paper offers 
several ways to use base map data contained in geo-
graphic information systems to perform the problems 
of hyperspectral images analysis.
The linear spectral unmixing problem is one of the 
key issues in terms of  analysis of hyperspectral ERS 
data. It is assumed that each pixel of the image is de-
scribed by a linear model for the spectral mixture of 
some spectral signatures [1-3], and the linear spectral 
unmixing problem is to find coefficients of this linear 
combination.
The set of methods of Linear Spectral Analysis 
(LSMA) was developed and systematized in papers 
written by Professor C.I. Chang, who had devoted his 
three monographs [1-3] to the issues of hyperspectral 
image processing. A slightly different classification is 
presented in paper [4]. Following the classification 
proposed in [1-3], the methods can be divided, ac-
cording to the usage degree for a priori information, 
into Supervised  LSMA (SLSMA), when the list of un-
mixing signatures is known, and Unsupervised  LSMA 
(ULSMA), when no priori information about the list 
of signatures is available. The ULSMA specific fea-

ture is the valuation strategy for the set of signatures 
composing the image in some optimal manner fol-
lowed by application of one of the SLSMA algo-
rithms. The SLSMA algorithms are a combination 
of data modifying methods to account for the di-
verse priori information about interdependencies 
of channels and signatures, and linear spectral sep-
aration methods for mixtures. The latter ones are 
divided, according to the available constraints, into 
the unmixing coefficients and are based on appro-
priate optimization methods.
In this paper we consider the same problems, but 
they are added in wording with additional infor-
mation available on the base map in geographic in-
formation systems. Using the base map containing 
the information about the spatial arrangement of 
real objects (including small ones), some addition-
al constraints may be imposed on linear spectral 
unmixing problem, and significant improvements 
may be obtained as solutions both on the edges 
of map objects and when small objects available 
(which do not contain any pixel on input image 
entirely). The proposed approach allows to imple-
ment the so-called subpixel selection method when 
the derivable spectral coefficients, or the spectral 
signatures, correspond to the areas the physical di-
mension of which is less than the linear resolution of 
hyperspectral imaging.
The work has been organized as follows. The first 
section presents the spectral unmixing problem of 
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linear signature mixture and provides the informa-
tion about the constraints.
The following sections contain new results: the second 
section describes the linear spectral unmixing algo-
rithm that enables make the spectral separation on the 
edges of map areas using the base map; the third sec-
tion presents the subpixel spectral selection algorithm 
that enables obtain spectral signatures of small map 
objects the  dimensions of which may be smaller than 
image readings. The experimental results of the spec-
tral unmixing algorithm are given in the fourth sec-
tion, whereas the subpixel spectral selection algorithm 
– in the fifth section.
Conclusions, acknowledgments and references are 
given at the end of the paper. 

1. Spectral unmixing problems in linear mixture 
of spectral  signatures

To describe pixel v  of the image we use a linear model 
of spectral mixture [1-3, 4], when the source pixel is 
represented as a linear combination of several spectral 
signatures M m mp1,...,
v M n  (1)

where n  is an error of the model and measurements  
T

p

T

1,...,  are coefficients which satisfy 
one or both constraints:
1) normalization

j
j

p

1
1  (2)

2) non-negativity

j j p0 0,  (3)

The coefficients are searched by minimizing the value 
of the root-mean-square deviation of the linear mix-
ture of spectral signatures from the true value of hy-
perspectral pixel:

2 v M v MT min   (4)

Sometimes, to account additional factors the problem 
is set in the following way:
2 v M A v MT min  (5)

where A is a weighting matrix that takes into account 
the errors in each channel and their interconnection. 
Without loss of generality, we shall assume that A 
is an identity matrix; in all other cases the problem 
(5), by means of linear transformations of the ma-
trix of spectral signatures and pixel-vectors, may be 
reduced to the problem (4). The methods and al-
gorithms for solving the problem (4) are presented 
both in the given reference papers [1-4] and in spe-
cialized studies [5-8].

2. Spectral unmixing algorithm 
using the base map

The priori information which is taken into consider-
ation in the spectral unmixing problem based on the 
base map data is assumed to be as follows:
1) a list of the known spectral signatures LS, 

dimension NS si i

NS

0

1
 (not necessarily complet-

ed),
2) a list of the known types of areas/map objects in a 
digital vector map LR, dimension NR, 
3) a compliance matrix of signatures and map areas 
with a dimension of NSNR, respectively. The value of 
each matrix element (iLS,iLR) is defined as follows:
- i iLS LR, 2  if the signature iLS may be present in 
the spectral mixture for the area iLR ; 
- i iLS LR, 2 , if the signature iLS is not present in 
the spectral mixture for the area iLR;
– ( , ) (0,1)LS LRi i    if the signature iLS is used with a 
proper coefficient.
The set of these data may be stored as a database and 
used for a variety of applications.
The inputs for the specific problem of spectral unmix-
ing are:
1) georeferenced hyperspectral image v n n1 2,  with 
a resolution R,  dimension N1N2;
2) the “masks” of areas / objects, each of which cor-
responds to the index of LR. The “masks” of areas can 
be either vector– or raster-typed obtained by means 
of GIS. In this latter case, the mask resolution should 
be several times higher than R (resolution of the input 
image). The areas may not intercross, and the dimen-
sion of each area should be greater than the amount of 
image reading;
3) the ExtendSpectrum parameter. If its value is the 
“Truth”, the list of signatures in solving the problem 
may be supplemented. The supplemented list will be 
called LSE, the dimension list NSE will be NSENS. If 
the parameter value is the “False”, then the lists LSE 
and LS will coincide;
4) the optional parameter EPS intended to stop the  
supplement procedure for the signature list.
It is recognized that the geo-referencing for the in-
put image has been accurately performed. If the data 
about spectral signatures in the image are completely 
missing, then, to initialize the signatures list it is pro-
posed to use any of the known Lookup Methods of 
“pure” pixels, e.g. the algorithm N-FINDR [9].
The outputs of the proposed algorithm are:
1) the supplemented list of signatures LSE;
2) NSE is a channel image, dimension N1N2, contain-
ing, in each reading, the reference coefficients of the 
corresponding (by its position) hyperspectral reading 
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of the source image in the form of the spectral sig-
natures mixture LSE. Each channel of output image
(n,n) corresponds to the set of coefficients for the 
spectrum signature with a number of  i from the list 
of LSE;
3) the remaining hyperspectral images x(n1,n2) of 
the referenced hyperspectral reading of the source 
image  with the linear mixture of spectral signa-
tures.
A step-by-step description of the proposed spectral un-
mixing algorithm using the base map data is given below.
1. Among the set V of the readings of the complete 
image, the readings fully laid within the ‘’mask’’ areas 
(not on the edges) are selected. Let us indicate these 

varieties of readings as V j j

NR

0

1

.

2. For each reading of the set Vj the problem of linear 
spectral unmixing (4) is solved under the con-
straints (2) and (3). As a result,  the proportion of 
each individual spectral component is determined 
from the variety LS, for which (iLR,iLS) allows for 
the presence (if the share is fixed, it is also pre-
liminary fixed in the corresponding system, and 
not being the solution to this problem). Solving 
this problem results to the values  i(n1,n2) for 
the respective indices i from LS and the readings 
from Vj. 
3. There is formed the set

 
X V

j

NR

j
0

1  

of readings which contains hyperspectral remains  ob-
tained in step 2 of the spectral unmixing.

x n n v n n n n s
i

NS

i i1 2 1 2 1 2
0

1

, , ,

4. If ExtendSpectrum = the ‘’truth’’, steps 4.1 through 
4.3 are to be executed. Otherwise, there will be a tran-
sition to  step 5.
4.1. For the set X of hyperspectral remains a search 
procedure of “pure” pixels with the EPS parameter 
is performed. If the original list of signatures was 
not complete, the set of remains will contain lin-
ear combinations of missing signatures. Then, the 
“pure” hyperspectral remains will indicate the spec-
tral signatures from the set V to be included into the 
list of LSE.

4.2. For the set V j j

NR

0

1
 the application (4) is to be 

solved under the constraints (2)-(3) to supplement 
the list of signatures. Let us denote the resulting 
spectral coefficients as i n n1 2, , where i  is the 
index from the list of signatures.

4.3. For the readings from V j j

NR

0

1

 the values of 
hyperspectral remains will be recalculated accord-
ing to the supplemented list of signatures:

x n n v n n n n s
i

NSE

i i1 2 1 2 1 2
0

1

, , ,

5. For each ‘area-signature’ pair there is deter-
mined a distribution law for the spectral coefficients 

i n n V
n n

j
1 2

1 2
,

,
. 

Let us denote the corresponding distribution (proba-
bility density) laws: 

pij i NSE
j NR
0 1
0 1
, ,
, . 

In the case of the normal distribution it is sufficient 
to determine the mathematical expectation and 
variance ratios.

6. There is formed the set of pixels V V V* \ j
j

NR

0

1

 
reaching the edges of map areas/objects.
7. For each pixel (n1, n1) from the list V* the area pro-
portions occupied by a particular area is to be calculat-
ed. Let us denote the areas: 

S n nj j

NR
1 2

0

1
, . 

Obviously, the constraint S n nj
j

NR

1 2 1
0

1

,  
should be fulfilled.
8. For each reading (n1, n1) from the list V* (locat-
ed on the edge) the following values are determined 
with the signature v n n1 2, :

i j ij
j

NR

n n S n n n n1 2 1 2 1 2
0

1

, , ,
 

as solutions for the following application task:

v n n n n S n n sij j i
j

NR

i

NSE

1 2 1 2 1 2

1

0

1

0

1
2

, , ,

ln , min
,

p n nij ij
j

NR

i

NSE

n nij i

1 2
0

1

0

1

1 2 0,, ,
,

, , , , , ;

,

NSE
j NR

ij

ij

n n i NSE j NR

n n

1
0 1

1 2 0 0 1 0 1

1 2
i

NSE

j NR
0

1

1 0 1, .. .

Here [0,1] is a parameter which characterizes the 
relative value of each of the summands in the criterion 
objective function. For the case when probability dis-
tributions 
pij i NSE

j NR
0 1
0 1
, ,
,

 

are normal, the above criterion will be as follows:
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9. For each reading located on the edge the hyperspec-
tral values of remains will be recalculated as follows:

x n n v n n n n s
i

NSE

i i1 2 1 2 1 2
0

1

, , , .

Note. Any extract methods for spectral pure ele-
ments can be used as the list supplement procedure 
in step 4.1, e.g. the algorithm N-FINDR [9]. The 
value and the meaning of parameter EPS are de-
termined by a particular algorithm resulting to the 
stop of the list supplement procedure. When using 
the algorithm N-FINDR, the value EPS character-
izes a threshold value which finally determines the 
number of selected signatures which serve as the so-
called “pure” pixels. The connection of the threshold 
value EPS with the number of selected signatures is 
related by limiting the amount of the eigen values of 
the correlation matrix of image channels (using the 
Karhunen-Loeve expansion). 

3. Spectral  selection algorithm 
using the base map

Requirements to the priori information necessary for 
spectral selection of the signature of small objects 
coincide with the above mentioned requirements 
valid for the spectral unmixing algorithm.
The inputs for the particular problem to the signature 
spectral selection of small objects are as follows:
1-4) input data which coincide with the respective po-
sitions of the input data valid for the spectral unmixing 
algorithm using the base map outlined in the previous 
section;
5) the index  t  for the small map area/object (this 
area does not contain any pixel on input image en-
tirely) for which it is required to determine the spec-
tral signature.
The outputs of the algorithm are:
1) the supplemented list of signatures LSE;
2) the spectral signature s  for the area t.
A step-by-step description of the spectral selection al-
gorithm of the signature of the small area/object using 
the base map is given below. 
1-7. The relevant steps of the spectral unmixing al-
gorithm are implemented using the base map as de-

scribed in the previous section, for those areas which 
have at least one whole reading in their composition .
8. For the specified index t  of the “small” area there is 
formed a subset V**  of the set V*  of readings (a defi-
nition of this set is given in the previous algorithm), 
which ‘’contain’’ this area.
9. The target spectral signature s  of the field t  is 
defined as the solution to the following optimization 
problem:
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Here [] is a parameter which characterizes 
the relative value of each of the summands in the 
criterion objective function. If 0 , when spectral 
coefficients are determined from the condition 
ij ij ijp

* argmax , the explicit formula for 
the derived target area spectral signature will be as 
follows: 

s
S n n v n n S n nt

n n V
j

j j t

NR

i

NS

1 2 1 2 1 2
1 2 0

1

0
, , ,

, ,**

EE

ij i

t
n n V

s

S n n

1

2

1 2

1 2

*

,

,
**

For a normal distribution model the value 

ij ijp
* argmax  

is determined as the average unmixing coefficient 
of the j-typed area by the spectral signature with 
the index i. Thus, it is possible to show that with 
such definition of these values the constraints on 
spectral coefficients mentioned in the optimiza-
tion problem will be performed. 

4. Experimental results 
of the spectral unmixing algorithm

To study the effeciency of the proposed spectral al-
gorithm the synthesized  hyperspectral images with 
 channels were used with a range of wavelengths 
from to  microns with an increment size of  
microns. Dimensions of the analyzed images were 
 pixels.
A raster mask for areas with the dimension of 
512512 was used as base map data.
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Signatures from the spectral IGCP-264 Library 
[10] were used to generate  test images. The co-
efficients of spectral signatures were set as sta-
tionary random fields with a biexponential cor-
relation function. When forming images, the 
preliminary correction of coefficients was per-
fomed with regard to the constraint (3), and the 
normalization of coefficients was made in accor-
dance with the constraint (2).
In order to receive the test (processed) image, 
first its detailed prototype was formed, i.e. a 
large-scale image with area masks, from which 
the test image was obtained by average val-
ues of the prototype hyperspectral readings as 
follows:

v n n
T

v n T k n T kp
k k

T

1 2 1 1 22 1 2
0

1

1 2

, , ,
,

  (6)

where vp  is the hyperspectral reading of the detailed 
image-prototype, v  is the reading of the processed 
image, T2 is the ratio of the linear dimensions of de-
tailed and processed images.
To supplement the list of signatures the algorithm 
N-FINDR [9] with parameter EPS=10-6 was used.
An example of the test image and the area mask is 
shown in Fig. 1.
We shall denote a bright mask area as the Area-1, and 
a dark mask area as the Area-2. The Area-1 is formed 
by the mixture of signatures ALUNITE_AL705 and 
ILLITE_IL101, and the Area-2 is formed by the mix-
ture of signatures SEPIOLITE_SEP3101, BUDDING-
TONITE_NHB2301, HEMATITE_FE2602 from the 
IGCP-264 Library [10].

а)    b)
Fig.1. a) the test image  b) the area mask

The first part of the experiment was to investigate an 
error in estimating the spectral coefficients, when 
the signature set was fully defined. To calculate the 
error we used the following formula:

1 1 1 2 1 2
2

0

1

1 2M NS
n n n ni

b
i

i

NS

n n M
, ,

,
,

where M  is the set of readings of the analyzed area, 
M  is the cardinality of M ,  i

b n n1 2,  are 

the basic factors for the signature with the number 
i  in the list LS , i n n1 2,  is the evaluation of 
coefficients for the signature with the number i  in 
the list LS . The set of entire pixels V  or the set 
of edge pixels V*  were used in the capacity of the 
variety M .
Graph drawign of values for the mean-root-
square error of coefficients is shown in Fig. 2. 
It is obvious that the unmixing coefficients are 
restored quite accurately within a wide range of a 
signal/noise ratio (additive uncorrelated noise with 
the normal distribution law with a zero mean and 
the given variance ratios are used in all exper-
iments).

Fig. 2. The mean-root-square error for restoring the coefficients

The second part of the experiment was to study 
the representation quality of the original image 
readouts in the absence of signature information. 
The average absolute representation error of the 
hyperspectral pixel was applied as an indicator of 
the processing quality using the obtained coef-
ficients:

1
0

1

N i
i

N

,

i i j ji
j

NSE

n n MM
v n n n n s1 1 2 1 2

0

1

1 2
, , ,

,

where N is the number of spectral components 
(channels), i  is the average absolute represen-
tation error in the reading of the hyperspectral 
image in i-m channel, M – is the set of readings 
of the analyzed area, v n ni 1 2,  is the i -spectral 
component of the pixel n n1 2, , s ji  is the i
-spectral component of the j – signature from 
the list LSE .
Fig. 3 and Fig. 4 show the respective values   for 
the  considered test image for the known list of 
signatures in the absence of signature information 
(signatures extracted by N-FINDR are used). 
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Fig. 3. The average absolute pixel representation error at 
different signal/noise ratios for the known list of signatures

Fig. 4 . The average absolute pixel representation error at 
different signal/noise ratios for the unknown list 
of signatures (signatures extracted by N-FINDR)

In general, it is seen that the representation error for 
the known set of signatures is smaller than that one 
needed to evaluate the set of signatures by means of 
N-FINDR method. For the complete list of signatures 
the error nature for entire and edge pixels in spectral 
channels is illustrated in Fig. 5. The graph drawing has 
been obtained when the signal/noise ratio was 100. 
Obviously, the smallest representation error refers to a 
smoothly varying signature areas. It should be gener-
ally noted that the method shows good noise immuni-
ty properties.

Fig. 5. The average pixel representation error at the signal/noise 
ratio of 100 and in the well-known signature list

5. Experimental results 
of the spectral selection algorithm

The efficiency of the spectral selection algorithm was 
studied on test images synthesized with the parame-
ters and according to the scheme described above in 
the previous section. Fig. 6 shows the original image 
and the object mask.

а)   b)  
Fig. 6. The test image and the objects mask for the spectral 
selection method

A white line in the figure corresponds to the object, the 
signature of which is extracted. The thickness of the 
object on the mask varies from 0.375 to 0.125 of the 
linear pixel size in the test image. The signature, which 
was not present in the background areas, correspond-
ed to the map object.
The extracted signatures were compared with an object  
prototype signature KAOLINIT_KL502 from IGCP-264 
Library by the root-mean-square deviation criterion. The  
results obtained in both two cases of the algorithm appli-
cation — in the known list of signatures and in the un-
known list of signatures (extracted my means of N-FIN-
DR) — are shown in Fig. 7.

Fig. 7. The RMS graph drawing of extracted 
and prototyped signatures at different signal/noise ratios

Graph drawings in Fig. 7 show that the signature is re-
stored quite accurately within the wide range of the sig-
nal/noise ratio (the worst error has the order of 0.01); 
moreover, the error value insignificantly changes with-
in the tested noise range.
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Conclusion
The paper has proposed two crucially new  algo-
rithms for the linear spectral mixture analysis in 
hyperspectral images, the specific nature of which 
is to use the image-registered areas, when solving 
the base map problems. For the first algorithm, the 
base map is used to clarify the spectral coefficients 
at the object edges introducing additional con-
straints in the problem description. For the second 
algorithm, the additional spatial information provid-
ed by the base map also specifies the corresponding 
formal criterion of the problem and allows to perform 
the spectral selection of small objects (i.e. the objects 
which has none of the entire spectral image reading) 
to extract their spectral signature. For both algorithms 
the set of applied spectral signatures may be either 
prespecified (with undetermined or predefined coef-
ficients) or unknown and extracted in working on the 
algorithms. This fact makes it possible to assign the 
developed algorithms simultaneously to two classes 
of the hyperspectral analysis method – the methods 
of supervised (SLSMA) and unsupervised (ULSMA) 
linear spectral analysis.
The subpixel selection problem of the spectral signature 
in the proposed description (extraction of the signature 
for a small object, the dimensions of which can be small-
er than the image readings) is new and, judging by the 
results of this work, it has been successfully solved using 
the base map. The existing methods of operation with hy-
perspectral images at the “sub-pixel” level may solve the 
problems of sub-pixel classification [1-3] and the target 
detection [1-3]; however, they do not remove the spectral 
signatures for small objects (the term “sub-pixel” in the 
problems of the spectral analysis mixture is understood 
as getting a part / a factor of the spectral coefficient of the 
entire hyperspectral image reading).
Further focus areas relate to the creation of numeri-
cally efficient methods for solving advanced problems 
of spectral unmixing, in which the traditional problem 
of linear spectral unmixing (2)-(4) turns out to be ad-
justed with additional constraints and/or changes in 
the objective function (similarly to the problems given 
in the second and the third sections of this paper). 
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