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 Introduction  
Contour analysis is one of the key elements of the im-
age identification problem which means to study the 
image as a set of contours [1,2]. This paper describes 
a new method of image contours identification based 
on the mathematical apparatus of spiral beams, i.e. 
light fields maintaining their structure in focusing and 
propagating.
The principle of the offered approach lies in the fact 
that all operations are performed not with a flat curve 
defined by a contour, but with a spiral beam deter-
mined herewith. This is because it is more meaningful 
to consider the spiral beam which possesses a number 
of favorable properties (its guaranteed description us-
ing analytical uniformly convergent functions, many 
ways to specify its amplitude, roots and expansion co-
efficients [3]).
It is obvious that the identification result may 
(and must) be based on the set of solutions for 
many contours outlined in the image, and it can 
be easily achieved in the case where there exists 
a two-contours comparing mechanism. In par-
ticular, the purpose of this paper is to identify 
high-quality contour characteristics and retrieve 
the similarity information therefrom. The paper 
clarifies results obtained in [4] and also gener-
alizes the identification approach for deformed/
noisy contours.
We shall also note that the image identification 
area is quite diverse according to the applied 
methods and significant attention has been late-
ly paid thereto on both theoretical and practical 
grounds [5,6].

1. Contour description 
The first and abiding procedure in the problem of 
contour images identification is to identify boundar-
ies (contours) of the object. However, it is supposed 
in the paper that contours have already been identi-
fied by one of the existing methods. The next step is 
to have an appropriate description of the contours ob-
tained using the information, on the basis of which the 
identification process will be performed, in particular, 
its characteristics should be precise and invariant with 
respect to different factors (particularly, they should 
not depend on the choice of a starting point). Looking 
ahead, we shall note that expansion coefficients of the 
spiral beam would play such information role. Fig. 1 
shows the image of a ship on which, for simplicity, only 
one contour, i.e. its boundary, has been identified.

Fig. 1. Image (left) and contour of the object (right)

We shall consider in this paper some particular closed 
flat curves consisting of an ordered set of points as the 
mathematical contours representation:

( ) ( ) ( ),  [0, ].t x t iy t t T      (1)
It is evident that any closed curve can represent a 
proper periodic function with period T .
Each contour may be certainly presented as an infinite 
series in accordance with a system of full orthogonal 
functions. The task of expansion of the aforesaid func-
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tions is described in details in paper [7], which brings 
forward classical bases applied in image identification 
tasks.
The problem, however, is as follows. The final set of 
expansion coefficients for a one-dimensional base is 
radically dependent on what point we shall “start” the 
curve from (thus, setting it within the range of [0, ]T , 
or [ , ]a a T ). As regards the curve, it certainly makes 
no difference, but only in case when we use a complete 
set of basic functions, though in practice calculations 
are only made using total amounts of these series. It 
should be noted that if the curve is considered as a 
two-dimensional object specified within a plane, this 
problem is eliminated. However, the price to be paid 
for such choice is a large number of computations and 
asymptotic growth of the complexity of such algo-
rithms. This approach is particularly considered in this 
paper and its section 5 explains how to manage with 
the above said shortcomings.

2. Contour as an initial object to form 
spiral beams 

The analysis of different types of light fields has iden-
tified a new type of light beams called spiral [3]. It 
turned out that the spiral beam is considered to be a 
light field which maintains its intensity structure up 
to scale and rotation when propagating and focusing.  
Furthermore, the structure of such light field can be 
highly diversified; in particular, it can have a free form 
of the flat curve including the closed one.
It has been established that the complex amplitude 

( , )S z z  of this beam for the generating curve ( )t  has 
the following form:

2 2 2
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where   – is Gaussian parameter of the beam, and an 
over-bar means the complex conjugation. An example 
of such curve and its respective spiral beam is shown 
in Fig. 2.

a) b) c)
Fig. 2. Generating curve (а) and intensity distributions (b) 
and phases (c) of the respective spiral beam

The following property of “quantization” of spiral 
beams in form of closed curves is important. If the 
condition (quantization) is fulfilled

21 ,  0, 1 ,  2
2curve q qS N N     (3)

where curveS  is an area under the curve, the beam com-
plex amplitude is independent on the curve starting 
point. In other words, the spiral beam can’t be deter-
mined by the contour starting point. Therefore, any to-
tal amount of the series ( , | ( ), [ , ])NS z z t t a a T    will 
not be affected by this starting point up to the total un-
imodular component depending only on parameter a . 
Thus, the problem of the starting point in analysis and 
identification of the input contour is eliminated. This 
means that, with any desired degree of accuracy and 
according to the spiral beam ( , | ( ), [ , ])S z z t t a a T   , 
we can assign its total series sum as follows:
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The equation given below shows that this may solve 
also the problem of rotation of the analyzed contour 
since when it rotates by angle , the total series sum 
shall vary as follows:
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that can prove once again that expansion coefficients 
are capable to characterize rotation angles.
We should note here another very important aspect. 
The quantization parameter, as shown in [8], deter-
mines a number of zeroes of the complex amplitude 
within the contour and, in fact, a polynomial degree 
remaining from the initial analytic function of the spi-
ral beam after getting the total sum with the desired 
number of expansion coefficients. It is obvious that if 
the analyzed contour is complicated, the quantization 
parameter cannot be small: it is impossible to describe 
complex things simply. Nevertheless, the fact that we 
have eliminated the problem of dependence on the 
choice of the starting point and rotation angle is very 
important and makes the offered method deserving 
more detailed study.

3. Contour analysis 
Suppose we have two contours in the database, the in-
put and control ones, and it is necessary to determine 
whether they correspond to each other or not. 
Before constructing beams we should make the fol-
lowing: we will identify steps of complex grids, on 
which spiral beams will be calculated so that the areas 
constrained with the curves will be equal. Reducing 
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them to a common area allows us to solve the problem 
of an unknown image scale (it will be located by ratio 
of a step of one grid to the step of another grid), while 
maintaining independence of the choice of the starting 
point and the rotation angle.
Let us construct appropriate spiral beams for both 
contours keeping the required number of members 
[4]. According to the above scheme we shall assign 
contours in accordance with two spiral beams; the pur-
pose is to get two sets of complex factors: (1)

0{ } cN
n nc   and 

(2)
0{ } cN

n nc  . In the case when the quantization parameter 
is sufficient enough to distinguish two contours, the 
aforesaid sets of coefficients shall coincide up to ro-
tation:

(1) (1) (2)
1

(2) (2) (1)
1

| 1|
|

1, , 1, ln ,
|
n n n

c n
n n n

c c c
n N

ic c c




      (6) 

If n const  for all values of n , then n  is the con-
tour mutual rotation angle  . This fact can be easily 
obtained by denoting the ratio of two complex ampli-
tudes based on the spiral beam representation in form 
of the above total sums (4).
If the condition (6) is not satisfied, we can identify 
mismatch of these contours.

4. Contour analysis algorithm  
Based on the aforesaid, we can summarize a step-
by-step sequence of operations (block-diagram, Fig. 
3) to determine the similarity between two proposed 
contours. First, they must be assigned in form of the 
ordered set of plane points – the curve (step 1). Ac-
cording to the resulting curves we should calculate 
corresponding spiral beams (step 2) and expand 
them in accordance with the orthogonal system 
(step 3) taking the required number of expansion 
coefficients which is empirically determined with-
in the scope of the problem. And finally, based on 
comparing two sets of coefficients, we can conclude 
whether these two contours are identical up to scale 
and rotation (step 4).

Fig.3. Block-diagram of the identification algorithm

Thus, the identification algorithm possessing the fol-
lowing characteristic properties is to be implemented.
First, it relates to independence of the algorithm on se-
lecting the contour starting point and the contour im-
age scale. Second, the contour object may have an ar-
bitrary form; its complexity is only determined by the 
system resolution, and not by the number of contour 
elements typical for other methods. Third, all com-
puter calculations carried out at steps 1-3 are used di-
rectly in decision making; they don’t have total search 
counting operations which shall be ignored. Thus, the 
last two characteristic properties look quite attractive 
against such generally accepted contour identification 
method as the contour analysis using correlation func-
tions (see. [2]).
We shall further note that in initial consideration of the 
foregoing method steps 2 and 3 look very resource-in-
tensive since they operate on two-dimensional objects, 
i.e. the complex on-plane amplitudes and the bases. 
However, the authors have found and tested the way 
how to reduce the number of calculations by two or 
three decimal exponents reducing true calculations to 
one-dimensional ones. Actually, steps 2 and 3 shall be 
combined into one step through direct calculation of 
expansion coefficients using only one-dimensional in-
tegrals. Unfortunately, such important in their applied 
significance details go beyond the scope of this paper 
suggesting the general concept of contour identifica-
tion using spiral light beams.
The shortcomings of this approach may include the fol-
lowing. First, the imaging operation which is extreme-
ly “hard” for counting, especially on mobile devices, is 
used in calculations. Second, no effective evaluations 
of the quantization parameter and the number of se-
ries remainder terms sufficient (and necessary) for 
stability of identification results are currently known. 
This issue has not yet been sufficiently analyzed and 
requires more detailed study.

5. Noise accounting  
So, the basic principle of the method has been formu-
lated and described as series of steps, however when 
proceeding from the forgoing theoretical computa-
tions to practical implementation of the approach, 
it is necessary to make some additional comments. It 
should be noted that the factors which haven’t been 
considered so far in this paper, i.e. noises and dis-
tortions, can inevitably occur in real systems. There 
are a lot of reasons for their presence, i.e. discriti-
zation errors in CCD-matrices, information trans-
mission failures from image recording devices to 
computing hardware implementing the identification 
process and so on.
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The authors have researched how the offered ap-
proach can respond to this kind of distortions. The 
method proved to be very resistant to noises in the 
identified contour. First of all, this relates to the fact 
that the equation for the complex amplitude of the 
spiral beam (2) includes Gaussian exponent which 
has a “smoothing” effect demonstrated by the fact 
that small contour deformations can only lead to 
small changes in the complex amplitude.
Despite the fact that the complex amplitude and 
its zeros are resistant to the contour deformation, 
the expansion coefficients (see Vieta formulas, for 
example, in [9]) may vary quite significantly. This 
doesn’t prevent to use them in identification since 
the truncated series (4) converge uniformly and 
very “fast”, and the basic information-significant 
factors have smaller numbers than the quantization 
parameter.
Besides, it is possible to use an additional and slight-
ly modified global characteristic (in contrast to “lo-
cal” co-coefficients) which is known in light field 
optics as an overlap factor, and in functional analy-
sis it is known as a standard scalar product rated in 
Hilbert space 2

2 ( )L  .  In practice, ( )K   represents 
a correlation function according to the mutual rota-
tion angle   of spiral beams (1) ( , )S z z  and (2) ( , )S z z , 
where the scalar product of the numerator in the 
formula below (7) can serve as a proximity measure. 
The maximum modulus of this function is achieved 
at the true mutual rotation angle  of the contours 
being identified.
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In contrast to the identification method using cor-
relation functions described, for example, in [2], the 
equation (7) has the following advantages: the num-
ber of summands in each sum is the number of ex-
pansion coefficients (approximately dozens, or one 
or two hundred items), and not the elements defin-
ing the contour (over 500). Besides, it is possible to 
identify the rotation angle with the required accu-
racy, i.e. if the angle increment   for identification 
of the maximum correlation function is small, the 
greater accuracy may be achieved, and if it is large – 
the higher speed.
Using the formula (4) and the orthogonality prop-
erty of Laguerre-Gaussian base, the equation (7) 
may be easily rewritten in the representation using 
only expansion coefficients:
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Thus, a new tool shall appear which can clarify and 
confirm, when required, identification results calcu-
lated using only the coefficients.

6. Low detailization as express-testing 
for comparison 

The fact of instability of expansion coefficients has 
stimulated to search additional solutions enabling to 
neutralize the influence of noises on the considered 
method. This has led to discussion of the aforemen-
tioned correlations, as well as to situation which is 
called as the “case of ultra low detailization.”
The idea is as follows: if in case of a large number of ex-
pansion coefficients their accuracy may be worse in the 
presence of noises, it is necessary to construct spiral 
beams with a very small quantization parameter (from 
 to ). Whereby, the intensity of this kind of light field 
will not superficially resemble the generating curve, as 
shown in Fig. 2, however in terms of application of the 
Vieta theorem and energy characteristics of the resulting 
light field such approach is justified.
As it will be seen below in section “Numerical simu-
lation”, this solution gives surprisingly good results 
though it is not obvious that if we are restricted to only 
two-five expansion coefficients, a significant part of in-
formation on the generating curve would not get lost. 
Thereby the rate of obtaining results increases mani-
fold. This allows us to consider the case with ultra low 
detailization as a peculiar kind of express-testing of 
scale and potential rotation angle, while maintaining 
all advantages and neutralizing some disadvantages of 
the original method summarized in section  hereof. It 
bears repeating that the case of ultra low detailization 
is not the basis to make decision on objects similarity; 
it is intended to filter out a large number of highly dis-
tinguished contours and give a hypothetical rotation 
angle, which can be tested by the correlation function 
(7) of highly detailed spiral beams (finding the maxi-
mum correlation can be significantly simplified in this 
case, i.e. searching the mutual rotation angle should be 
carried out in the vicinity of the hypothetical angle).

7.  Numerical simulation 
The aircraft image has been selected as a test sample, the 
boundary contour has been manually outlined and the 
spiral beam has been constructed thereto. After that the 
contour has been turned around in graphic editors by  
degrees, reduced to % of the original, and the corre-
sponding spiral beam has been constructed thereof.
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Fig. 4. From left to right: the aircraft initial image, the outlined 
boundary contour, the intensity of the generated spiral beam

In order to provide visual imaging in construction, the 
quantization parameter qN  has been equal to ; the 
number of expansion coefficients cN  – to . The 
value of Gaussian parameter is 1  , and the area un-
der the curve is 15curveS   . The correlation function 
may reach herewith the maximum of its absolute value 
 at the required angle of 123 degrees and the scale 
factor of . The maximum ( )K   of its modulus does 
not inherently exceed 1; in other words, the similarity 
of upper and lower contours has been identified, but 
not absolute, that is due to the processing (in Fig. 4 we 
can observe failures or fallouts on visible parts of the 
aircraft near its “tail”).
Let us proceed to the case with ultra low detailization 
(Fig. 5). For this purpose the quantization parameter 

qN  and the number of coefficients cN  have been se-
lected as being equal to 3.

Fig. 5. From left to right: the aircraft initial image, 
the outlined boundary contour, the intensity 
of the generated spiral beam 

The value of Gaussian parameter is 1  , and the 
area under the curve is 1,5curveS   . The correlation 
function may reach herewith the maximum of its ab-
solute value of 0.998 at the angle of  degrees and 
the scale factor of . The expansion coefficients 
calculated for the criterion (5) are presented in the 
table below.

Table. Expansion coefficients and the applied criterion

n (1)
nc

(2)
nc

(1)

(2)

|
|

|
|

n

n

c
c n

1 -0.088 – 0.335i -0.286 + 0.175i 1.034 -98
2 -0.482 + 0.517i -0.577 + 0.155i 1.182 -139
3 1.175 – 2.049i -0.365 + 2.131i 1.093 -128

Rotation angle mean value: -122

It should be noted that potential rotation angles n  
in themselves do not completely match the criterion, 
however a specific feature has been detected, i.e. their 
arithmetical mean value provides the desired rotation 
angle with a small error. This fact attracts our attention 
since it has been confirmed by numerous numerical 
experiments but has not yet been analyzed in detail.
Therefore, numerical experiments prove that the algo-
rithm shown in Fig. 3 can be successfully applied in 
situations where the identified contour is noisy or dis-
torted. This may be helped with some additional tools, 
i.e. the correlation ( )K   and ultra low detailization.

Conclusion
The paper brings forward a new approach to contour 
analysis based on close interrelationship of coherent 
optics, the theory of functions and numerical meth-
ods. We have shown and theoretically proved the con-
tour-matching algorithm that allows us to determine 
whether these two contours are identical up to scale 
and/or rotation. We have demonstrated the dynamics 
of development of the proposed approach in the pres-
ence of noises or deformations in the analyzed image. 
We have noted the fact of decreasing the number of 
computer calculations by reducing the problem to 
calculating one-dimensional integrals. We have in-
troduced additional tools which allow us to confirm 
identification results, i.e. the correlation and ultra low 
detailization.
It is assumed to continue researches in the following 
areas: first, in analyzing performance compared to 
classical methods of contour analysis; second, in ob-
taining asymptotic estimates on algorithmic complex-
ity of proposed calculations; third, in developing eval-
uation criteria for correlation values to be obtained.
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