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Introduction
Hyperspectral equipment enables to observe emis-
sions in hundreds of very narrow spectral ranges [1]. 
The multidimensional image, in which two measure-
ments characterize spatial position of ground points 
and the third one – their spectral properties, is formed 
in hyperspectral photographing. Each elementary im-
age section called a pixel is followed by a spectral-re-
sponse characteristic of emission which, when further 
used in photograph decoding and interpretation, al-
lows to evaluate physicochemical or biological condi-
tion of the objects observed.
Remote sensing spacecrafts currently operating and 
planned for space launching in the coming years (КА 
EO-1 /USA/, HJ-1B /China/, Resurs-P /Russia/, ST-
SAT-3 /Korea/, ALOS-3 /Japan/, PRISMA /Italy/, 
EnMAP /Germany/) equipped with hyperspectral 
equipment don’t allow to observe underlying surface 
with spatial resolution better than 30 m [2]. 
Current engineering and technological limitations in de-
veloping hyperspectral equipment provide a compromise 
decision on possible achievement of high spectral reso-
lution in exchange for the loss of spatial resolution. 
Hence, hyperspectral images contain unique data on 
spectral properties of the objects observed, however 
the data on their spatial properties contained therein 
possess less informational content if compared to tra-
ditional multispectral photographs.
Therefore, search of technology and research solu-
tions to form, at the same time, images with high 

spectral and spatial resolution is a critical task to 
obtain objective information in satellite environ-
mental monitoring.
This paper describes the integration method for 
hyperspectral and multispectral images to in-
crease their spatial and spectral properties, and 
it gives proper evaluation data about its efficient 
performance.

1. RESURS-P Spacecraft
Since July 25th, 2013, the Russian remote sens-
ing spacecraft RESURS-P has been successfully 
operating in orbit. The important feature of RE-
SURS-P spacecraft that distinguishes it from 
many other remote sensing spacecrafts is its 
complex observation capacity due to on-board 
installation of three types of surveying equip-
ment, i.e. high-detail, wide-span and hyperspec-
tral equipment.  
Capability to simultaneously observe underlying 
surface using different types of surveying equip-
ment significantly improves, among other things, 
the efficiency of solutions of many social, eco-
nomic and scientific applied tasks, and creates 
opportunities to develop new integration methods 
for the obtained photographs in order to improve 
their informational properties.
Table 1 shows main characteristics of RE-
SURS-P high-detail multi– and hyperspectral 
equipment.
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Table 1. Main characteristics of RESURS-P equipment

Characteristics High-detail 
equipment

Hyperspectral 
equipment 

Ranges of spectral 
channels, microns 

0.45 – 0.52
0.52 – 0.60
0.61 – 0.68
0.67 – 0.70
0.70 – 0.73
0.72 – 0.80
0.80 – 0.90

0.40 – 1.00
(from 96 

to 192 
channels)

Spatial resolution, m 3 30
Field of view, km 38 30
Image resolution, 
bits per pixel 10 12

Characteristic properties of RESURS-P survey-
ing equipment enable to simultaneously obtain  
multispectral photographs within the wave length 
range from  to  microns with spatial res-
olution of m, and a hypercube of data for the 
same area with spectral resolution from  to  
nm within the wave length range from  to  
microns and with spatial resolution of m. 
This information enables to define a problem of 
integration of hyperspectral and multispectral 
data as follows: to ensure image synthesis pos-
sessing both spatial and spectral properties com-
mon to specific photographs made by different 
types of equipment.

2. The offered method
Suppose M N k

MSIX P    is the multispectral image of 
underlying surface identified in space P, where M 
and N are spatial measurements and k means spec-
tral measurements. We similarly define the hyper-
spectral image

Knm
HSI PX  , 

whereas  m M n N k K, , .
Suppose that the available images XHSI and XMSI 
are different versions of the desired image with 
high spatial and spectral resolution. In this case 
multi– and hyperspectral images may be con-
ceived as follows: 
X XMSI 1( ) ,
X XHSI 2 ( ) ,

where 1 : P PM N K M N k  
and 2 : P PM N K m n K  
are transformation functions of spectral and spatial 
measurements, respectively.
Taking this into consideration, the integration al-
gorithm of hyperspectral and multispectral imag-
es may be presented in the following way in order 
to increase their informational content.
First, the initial approximation of the desired image 
X(0) with high spatial and spectral resolution is com-

puted. Each spectral channel of the image X(0) is deter-
mined by means of channel interpolation of the multi-
spectral image XMSI:
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Then, the obtained image X(0) is converted to the low res-
olution hyperspectral image XHSI  by reducing spatial 
dimensionality tenfold using bilinear interpolation.
Approximate estimate of the hyperspectral image 
XHSI  is compared with the original image XHSI, and 

the following approximation error is computed for 
each channel:

for q K
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The determined Error p r( , , )  is scaled in accor-
dance with dimensionality of the image X(0)  using bi-
linear interpolation and, finally, initial approximation 
of the high-resolution hyperspectral image is updated 
as follows:

X i j k X i j k Error i j k

i M j N k K

( , , ) ( , , ) ( , , ),

, , , , , .

( )0

1 1 1
 (3)

3. Simulated results and evaluation 
of performance of the hyperspectral 

and multispectral images integration method 
To appraise the offered integration method and to 
evaluate its performance the aircraft photograph of 
Baden’s suburbs (Switzerland) was used as the test 
high-resolution hyperspectral image with the di-
mension of  pixels made by APEX 
[3] equipment. The photograph contains urban in-
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frastructure, hydrology, forestry and agricultural fa-
cilities registered in  spectral channels within the 
wave length range from  to microns.
Seven images, which are considered to be ana-
logues of RESURS-P multispectral images, were 
simulated by averaging relevant spectral channels 
of the original test image. The analogue of RE-
SURS-P multispectral image was formed by se-
lecting first 112 spectral channels within the wave 
length range from  to  micron and by up-
sampling them with a dimension reduction factor 
equaled to 10 (Fig.1).

Fig.1 Multi– and hypserspactral images formed

The offered method was simulated on the as-
sumption of that multi– and hyperspectral photo-
graphs have undergone procedures of geometrical 
registration, radiometric and atmospheric correc-
tion, and normalization of dynamic light intensity 
range to the unified quantization scale.
Simulated results are given in Fig.2. Using origi-
nal and synthesized high-resolution hyperspec-
tral images, the analysis of accuracy of spectral 
profile reconstruction has been performed. In 
order to evaluate accuracy of reconstruction of 
the developed multi– and hyperspectral imag-
es integration method, the root-mean-square 
(RMS) and relative errors characterizing a de-
gree of closeness of original and synthesized 
images have been used.
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Table 2 shows the numerical computation results of 
evaluation of reconstruction accuracy for each spec-
tral channel of the synthesized high-resolution hyper-
spectral image.

a) 

b) 

c) 
Fig.2 Integration results for multi– and hyperspectral data: 
а) water-surface spectral profile reconstruction; 
b) foliage spectral profile reconstruction; 
c) red roofing spectral profile reconstruction
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Table 2. Evaluation results of reconstruction accuracy for each 
spectral channel

Channel 
No. RMS  relative,%

Channel 
No. RMS  relative,%

1 172.7 57.8 57 123.1 13.1

2 126.0 36.3 58 130.8 13.1

3 93.8 22.6 59 129.2 12.1

4 65.6 13.7 60 118.5 10.2

5 38.6 7.2 61 102.4 8.1

6 16.0 2.7 62 78.2 5.5

7 12.8 2.0 63 46.2 2.9

8 21.0 3.2 64 30.5 1.7

9 28.6 4.3 65 65.5 3.3

10 33.4 5.0 66 106.7 4.9

11 29.9 4.4 67 142.3 6.1

12 24.8 3.6 68 167.5 6.7

13 28.2 3.9 69 180.2 6.8

14 36.9 4.9 70 179.5 6.5

15 44.4 5.7 71 167.0 5.9

16 47.3 6.0 72 148.9 5.1

17 45.3 5.6 73 109.5 3.7

18 40.9 5.0 74 98.1 3.3

19 37.5 4.7 75 100.2 3.3

20 30.7 3.9 76 112.4 3.6

21 24.6 3.1 77 114.2 3.6

22 21.6 2.8 78 112.5 3.5

23 19.1 2.5 79 110.6 3.5

24 18.0 2.3 80 106.6 3.3

25 17.1 2.2 81 99.2 3.1

26 16.7 2.1 82 88.9 2.7

27 16.4 2.1 83 83,5 2.6

28 16.6 2.1 84 75.8 2.3

Channel 
No. RMS  relative,%

Channel 
No. RMS  relative,%

29 16.4 2.0 85 68.4 2.1

30 15.3 1.9 86 57.4 1.7

31 13.5 1.7 87 47.8 1.4

32 13.0 1.6 88 39.3 1.2

33 13.8 1.7 89 30.5 0.9

34 13.8 1.7 90 25.3 0.8

35 14.0 1.7 91 21.0 0.6

36 14.0 1.7 92 18.3 0.5

37 13.4 1.6 93 23.3 0.7

38 12.0 1.5 94 32.2 1.0

39 10.2 1.2 95 45.7 1.4

40 9.3 1.1 96 63.2 1.9

41 9.4 1.1 97 85.4 2.6

42 10.4 1.2 98 114.3 3.4

43 11.6 1.4 99 147.0 4.4

44 13.1 1.6 100 183.4 5.5

45 16.2 2.0 101 223.0 6.7

46 20.1 2.4 102 266.0 8.0

47 25.0 3.0 103 312.3 9.5

48 30.6 3.7 104 360.7 11.0

49 35.5 4.3 105 410.3 12.5

50 39.9 4.8 106 458.2 14.1

51 43.1 5.2 107 503.7 15.5

52 45.0 5.4 108 545.7 16.7

53 44.9 5.3 109 584.5 17.9

54 39.8 4.7 110 617.1 18.8

55 75.5 8.7 111 642.0 19.4

56 104.5 11.6 112 674.4 20.2

Mean value: 103.4 5.9
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The analysis of Table 2 allows us to conclude that max-
imum reconstruction errors relate to spectral channels 
being out of the wave range covered by multispectral 
photographs. Linear extrapolation used for this pur-
pose gives excessively rough approximation. When 
cutting off these channels from the data hypercube, 
reconstruction accuracy of the hyperspectral high-res-
olution image within the wave range from 0.45 to 0.9 
microns will amount to% that significantly results 
to high practical use.
The purpose of the next experiment was to deter-
mine performance efficiency of the proposed method 
in tasks of automatic objects’ classification. Based on 
specified spectral data for four types of objects, i.e. 
water surface, foliage, road surface and blue roofing 
material, using the Spectrum Angle Mapping (SAM) 
method [4], a distribution map of these objects was 
constructed on tested and synthesized hyperspectral 
images (Fig.3). The visual analysis of the data received 
confirms high similarity of classification results. To 
quantify classification results the error matrix was 
constructed characterizing not only a classification 
error for each class, but also errors related to false 
classification. The error matrix of objects’ classifica-
tion based on findings of the conducted experiment is 
given in Table 3. Matrix rows show true classes of the 
objects given on a control chart (the initial test hyper-
spectral image), and matrix columns show the classes 
outlined on the analyzed map obtained by the synthe-
sized hyperspectral image with high spatial resolution.  
A sum of diagonal elements of the matrix shows a total 
number of correctly classified pixels, and the ratio of 
this amount to the total number of pixels in the ma-
trix is the summary classification accuracy. In Table 3 
the correctly classified pixel-wise and percentagewise 
image areas are bold typed. Summary classification 
accuracy accounted for % in all objects. Taking 
into consideration the fact that this high result was 
obtained for the synthesized image having essential 
reconstruction errors in the spectral profile in out-of-
range channels covered by multispectral photographs, 
it can be assumed that the exception of these channels 
or the use of more accurate extrapolation methods will 
enable to improve classification quality.

Fig.3 . Results of construction of classification maps: 
a) initial test image; b) synthesized image

Table 3. Error matrix of channel classification 
Class I II III IV V

I
569017 
85.49%

53107 
7.93%

21532 
14.12%

302 
3.01%

844 
40.27%

II
46620 
7.00%

616676 
92.07%

0
0%

0
0%

0
0%

III
45466 
6.83%

0
0%

131008 
85.88%

0
0%

0
0%

IV
4263

0.64%
0

0%
0

0%
9722 

96.99%
0

0%

V
191

0.03%
0

0%
0

0%
0

1252
59.73%

 665557 
100%

669783
100%

152540
100%

10024
100%

2096
100%

The following class designations are given in Table 3: 
I – unclassified objects, II – foliage, III – road surface, 
IV – water surface, V – blue roofing.

Conclusion
The offered hyperspectral and multispectral data 
integration method is simple enough both intuitive-
ly and computationally. The method allows us 
to synthesize images which combine spatial and 
spectral properties common for particular multi– 
and hyperspectral photographs. Testing and ex-
perimental studies of the method performance 
have demonstrated its potential opportunities 
and high accuracy in tasks of objects’ classifica-
tion. The subject of further researches is to search 
proper solutions on how to improve reconstruc-



Analysis of hyperspectral data

Anshakov G.P. et al… COMPUTER OPTICS, 2015: 39(1), 77-82

82

tion accuracy of signals being out of wave range 
covered with multispectral photographs.
The offered method may be used to create a new 
information product required to solve social, eco-
nomic and scientific applied tasks which demand 
from space surveying both high spatial and spectral 
resolution.  
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