Субволновая локализация света в волноводных структурах

Котляр В.В., Ковалев А.А., Шуюпова Я.О., Налимов А.Г., Сойфер В.А.

Аннотация:
Моделирование с помощью программ FullWAVE и Fimmwave показало, что в градиентных планарных кремниевых секансных волноводах фундаментальная TE-мода может иметь ширину 0,09λ, λ -  длина волны; гибридная HE11 мода в полом кварцевом круглом ступенчатом волокне может иметь диаметр 0,03λ; фундаментальная TM-мода в нанощели в кремниевом планарном волноводе имеет ширину 0,065λ; планарная секансная градиентная микролинза разрешает два источника на расстоянии 0,15λ; градиентная планарная линза «рыбий глаз» в зеркальном резонаторе изображает точечный источник в пятно шириной 0,18λ; планарная секансная градиентная микролинза 6,5×5,34 мкм, использованная в качестве кольцевого резонатора, связывает два планарных субволновых волновода шириной 386 нм с эффективностью 79% (аналогичный кольцевой кремниевый резонатор имеет эффективность – 71%); в планарном металлическом волноводе световая мода (плазмон) распространяется вдоль краев волновода, проникая в сам волновод на величину 0,039λ для серебра; в нанощели в серебряной пленке распространяется TM-мода (плазмон), полностью заполняющая эту щель шириной 50 нм (ширина моды 0,111λ).

Abstract:
Modeling with FullWave and Fimmwave showed, that in gradient planar Si secant waveguides basic TE-mode can have width 0.09λ; hybrid HE11 mode can have diameter 0.03λ in a hollow silica round step waveguide; basic TM-mode have width 0.065λ in nano-slot silica waveguide; planar secant gradient microlens can imaging of two source in 0.15λ distance between them; gradient planar lens «fish eye» in mirror resonator can image point source as a spot width of 0.18λ; planar secant gradient microlens, used as round resonator, size of 6.5×5.34 mm can link two planar subwave waveguides width of 386 nm with efficiency is equal to 79% (similar round silicon have efficiency of 71%); light mode (plasmon) propagates in planar metal waveguide in slot along waveguide borders and penetrates in metal on 0.039λ (Ag); TM-mode (plasmon) propagates in argentum film and fills fully a slot in it width of 50 nm (width of mode is 0.111λ).

Ключевые слова :
сверхразрешение, щелевые волноводы, проволочные волокна, градиентный секансный волновод, кольцевой резонатор, градиентный секансный резонатор.

Key words:
superresolution, slot waveguides, wire fibers, gradient secant waveguide, round resonator, gradient secant resonator.

Литература:

  1. Tong, L. Single-mode guiding properties of subwavelength-diameter silica and wire waveguide / L. Tong, J. Lou, E. Mazur // Opt. Express. – 2004. – Vol. 12. – No. 6. – P. 1025-1035.
  2. Zhao, C. Field and dispersion properties of subwavelength-diameter hollow optical fiber / C. Zhao, Z. Tang, Y. Ye, D. Fan [at al] // Opt. Express. – 2007. – Vol. 15, No. 11. – P. 6629-6634.
  3. Almeida, V.R. Guiding and confining light in void nanostructure / V.R. Almeida, Q. Xu; C.A. Barrios, M. Lipson // Opt. Letters. – 2004. – Vol. 29, No. 11. – P. 1209-1211.
  4. Xu, Q. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material / Q. Xu; V.R. Almeida, R.R. Panepucci, M. Lipson // Optics Letters. – 2004. – Vol. 29, No. 14. – P. 1626-1628.
  5. Fujisawa, T. Polarization-independent optical directional coupler based on slot waveguides / T. Fujisawa, M. Koshiba // Optics Letters. – 2006. – Vol. 31, No. 1. – P. 56-58.
  6. Andersen, P.A. High confinement in silicon slot wavegui­des with sharp bends / P.A. Andersen, B.S. Schmidt, M. Lip­son // Optics Express. – 2006. – Vol. 14, No. 20. – P. 9197-9202.
  7. Prakash, K. Monolithic 3-D Silicon Photonics / K. Pra­kash, T. Inducuri, B. Jalali // Journal of Lightwave Technology. – 2006. – Vol. 24, No. 4. – P. 1796-1804.
  8. Rabiei, P. Polymer Micro-Ring Filters and Modulators / P. Rabiei, W.H. Steier, C. Zhang, L.R. Dalton // Journal of Lightwave Technology. – 2002. – Vol. 20, No. 11. – P. 1968-1975.
  9. Xu, Q. Micrometer-scale all-optical wavelength converter on silicon / Q. Xu, V.R. Almeida, M. Lipson // Optics Letters. – 2005. – Vol. 30, No. 20. – P. 2733-2735.
  10. Niehusmann, J. Ultrahigh-quality-factor silicon-on-insu­la­tor microring resonator / J. Niehusmann, A. Vörckel, P.H. Bolivar, T. Wahlbrink [at al] // Optics Letters. – 2004. – Vol. 29, No. 24. – P. 2861-2863.
  11. Xu, Q. All-optical logic based on silicon micro-ring reso­nators / Q. Xu, M. Lipson // Optics Express. – 2007. – Vol. 15, No. 3. – P. 924-929.
  12. Xia, F. Mode conversion losses in silicon-on-insulator pho­tonic wire based racetrack resonators / F. Xia, L. Se­ka­ric, Y. Vlasov // Optics Express. – 2006. – Vol. 14, No. 9. – P. 3872-3886.
  13. Chen, L. Compact bandwidth-tunable microring resonators / L. Chen, N. Sherwood-Droz, M. Lipson // Optics Letters. – 2007. – Vol. 32, No. 22. – P. 3361-3363.
  14. Fietz, C. Simultaneous fast and slow light in microring re­sonators / C. Fietz, G. Shvets // Opt. Lett. – 2007. – Vol. 32. – P. 3480-3482.
  15. Krioukov, E. Sensor based on an integrated optical microcavity / E. Krioukov, D. Klunder, A. Driessen, J. Greve [at al] // Opt. Lett. – 2002. – Vol. 27. – P. 512-514.
  16. Rukhlenko, I. Analytical study of optical bistability in sili­con ring resonators / I. Rukhlenko, M. Premaratne, G. Ag­rawal // Opt. Lett. – 2010. – Vol. 35. – P. 55-57.
  17. Takahara, J. Guiding of a one-dimensional optical beam with nanometer diameter / J. Takahara, S. Yamagishi, H. Taki, A. Morimoto [at al] // Opt. Lett. – 1997. – Vol. 22. – P. 475-477.
  18. Quinten, M. Electromagnetic energy transport via linear chains of silver nanoparticles / M. Quinten, A. Leitner, J. Krenn, F. Aussenegg // Opt. Lett. – 1998. – Vol. 23. – P. 1331-1333.
  19. Wang, B. Surface plasmon polariton propagation in nanoscale metalgap waveguides / B. Wang, G. Wang // Opt. Lett. – 2004. – Vol. 29. – P. 1992-1994.
  20. Pile, D. Channel plasmon-polariton in atriangular groove on a metal surface / D. Pile, D. Gramotnev // Opt. Lett. – 2004. – Vol. 29. – P. 1069-1071.
  21. Pile, D. Plasmonic subwavelength waveguides: next to zero losses at sharp bends / D. Pile, D. Gramotnev // Opt. Lett. – 2005. – Vol. 30. – P. 1186-1188.
  22. Lee, T. Subwavelength light bending by metal slit structures / T. Lee, S. Gray // Opt. Express. – 2005. – Vol. 13. – P. 9652-9659.
  23. Liu, L. Novel surface plasmon waveguide for high integration / L. Liu, Z. Han, S.  He // Opt. Express. – 2005. – Vol. 13. – P. 6645-6650.
  24. Matsuzaki, Y. Characteristics of gap plasmon waveguide with stub structures / Y. Matsuzaki, T. Okamoto, M. Hara­guchi, M. Fukui [and other] // Opt. Express. – 2008. – Vol. 16. – P. 16314-16325.
  25. Lin, X. Tooth-shaped plasmonic waveguide filters with nanometeric sizes / X. Lin, X. Huang // Opt. Lett. – 2008. – Vol. 33. – P. 2874-2876.
  26. Котляр, В.В. Градиентные элементы микрооптики для достижения сверхразрешения / В.В. Котляр, А.А. Ковалев, А.Г. Налимов // Компьютерная оптика. – 2009. – Т. 33, № 4. – С. 369-378.
  27. Триандафилов, Я.Р. Фотонно-кристаллическая линза Микаэляна / Я.Р. Триандафилов, В.В. Котляр // Компьютерная оптика. – 2007. – Т. 31, № 3. – С. 27-31.
  28. Шуюпова, Я.О. Расчет мод фотонно-кристалли­ческого световода разными методами / Я.О. Шуюпова, В.В. Котляр // Компьютерная оптика. – 2009. – Т. 33, № 1. – С. 27-36.
  29. Leonhardt, O. Perfect imaging without negative refraction / O. Leonhardt // New J. Phys. – 2003. – Vol. 11. – P. 093040.

References:

  1. Tong, L. Single-mode guiding properties of subwavelength-diameter silica and wire waveguide / L. Tong, J. Lou, E. Mazur // Opt. Express. – 2004. – Vol. 12. – No. 6. – P. 1025-1035.
  2. Zhao, C. Field and dispersion properties of subwavelength-diameter hollow optical fiber / C. Zhao, Z. Tang, Y. Ye, D. Fan [at al] // Opt. Express. – 2007. – Vol. 15, No. 11. – P. 6629-6634.
  3. Almeida, V.R. Guiding and confining light in void nanostructure / V.R. Almeida, Q. Xu; C.A. Barrios, M. Lipson // Opt. Letters. – 2004. – Vol. 29, No. 11. – P. 1209-1211.
  4. Xu, Q. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material / Q. Xu; V.R. Almeida, R.R. Panepucci, M. Lipson // Optics Letters. – 2004. – Vol. 29, No. 14. – P. 1626-1628.
  5. Fujisawa, T. Polarization-independent optical directional coupler based on slot waveguides / T. Fujisawa, M. Koshiba // Optics Letters. – 2006. – Vol. 31, No. 1. – P. 56-58.
  6. Andersen, P.A. High confinement in silicon slot wavegui­des with sharp bends / P.A. Andersen, B.S. Schmidt, M. Lip­son / Optics Express. – 2006. – Vol. 14, No. 20. – P. 9197-9202.
  7. Prakash, K. Monolithic 3-D Silicon Photonics / K. Pra­kash, T. Inducuri, B. Jalali // Journal of Lightwave Technology. – 2006. – Vol. 24, No. 4. – P. 1796-1804.
  8. Rabiei, P. Polymer Micro-Ring Filters and Modulators / P. Rabiei, W.H. Steier, C. Zhang, L.R. Dalton // Journal of Lightwave Technology. – 2002. – Vol. 20, No. 11. – P. 1968-1975.
  9. Xu, Q. Micrometer-scale all-optical wavelength converter on silicon / Q. Xu, V.R. Almeida, M. Lipson // Optics Letters. – 2005. – Vol. 30, No. 20. – P. 2733-2735.
  10. Niehusmann, J. Ultrahigh-quality-factor silicon-on-insu­la­tor microring resonator / J. Niehusmann, A. Vörckel, P.H. Bolivar, T. Wahlbrink [at al] // Optics Letters. – 2004. – Vol. 29, No. 24. – P. 2861-2863.
  11. Xu, Q. All-optical logic based on silicon micro-ring reso­nators / Q. Xu, M. Lipson // Optics Express. – 2007. – Vol. 15, No. 3. – P. 924-929.
  12. Xia, F. Mode conversion losses in silicon-on-insulator pho­tonic wire based racetrack resonators / F. Xia, L. Se­ka­ric, Y. Vlasov // Optics Express. – 2006. – Vol. 14, No. 9. – P. 3872-3886.
  13. Chen, L. Compact bandwidth-tunable microring resonators / L. Chen, N. Sherwood-Droz, M. Lipson // Optics Letters. – 2007. – Vol. 32, No. 22. – P. 3361-3363.
  14. Fietz, C. Simultaneous fast and slow light in microring re­sonators / C. Fietz, G. Shvets // Opt. Lett. – 2007. – Vol. 32. – P. 3480-3482.
  15. Krioukov, E. Sensor based on an integrated optical microcavity / E. Krioukov, D. Klunder, A. Driessen, J. Greve [and other] // Opt. Lett. – 2002. – Vol. 27. – P. 512-514.
  16. Rukhlenko, I. Analytical study of optical bistability in sili­con ring resonators / I. Rukhlenko, M. Premaratne, G. Ag­rawal // Opt. Lett. – 2010. – Vol. 35. – P. 55-57.
  17. Takahara, J. Guiding of a one-dimensional optical beam with nanometer diameter / J. Takahara, S. Yamagishi, H. Taki, A. Morimoto [at al] // Opt. Lett. – 1997. – Vol. 22. – P. 475-477.
  18. Quinten, M. Electromagnetic energy transport via linear chains of silver nanoparticles / M. Quinten, A. Leitner, J. Krenn, F. Aussenegg // Opt. Lett. – 1998. – Vol. 23. – P. 1331-1333.
  19. Wang, B. Surface plasmon polariton propagation in nanoscale metalgap waveguides / B. Wang, G. Wang // Opt. Lett. – 2004. – Vol. 29. – P. 1992-1994.
  20. Pile, D. Channel plasmon-polariton in atriangular groove on a metal surface / D. Pile, D. Gramotnev // Opt. Lett. – 2004. – Vol. 29. – P. 1069-1071.
  21. Pile, D. Plasmonic subwavelength waveguides: next to zero losses at sharp bends / D. Pile, D. Gramotnev // Opt. Lett. – 2005. – Vol. 30. – P. 1186-1188.
  22. Lee, T. Subwavelength light bending by metal slit structures / T. Lee, S. Gray // Opt. Express. – 2005. – Vol. 13. – P. 9652-9659.
  23. Liu, L. Novel surface plasmon waveguide for high integration / L. Liu, Z. Han, S.  He // Opt. Express. – 2005. – Vol. 13. – P. 6645-6650.
  24. Matsuzaki, Y. Characteristics of gap plasmon waveguide with stub structures / Y. Matsuzaki, T. Okamoto, M. Hara­guchi, M. Fukui [at al] // Opt. Express. – 2008. – Vol. 16. – P. 16314-16325.
  25. Lin, X. Tooth-shaped plasmonic waveguide filters with nanometeric sizes / X. Lin, X. Huang // Opt. Lett. – 2008. – Vol. 33. – P. 2874-2876.
  26. Kotlyar, V.V. Gradient-index elements of microoptics for superresolution / V.V. Kotlyar, А.А. Kovelev, А.G. Nalimov // Computer Optics. – 2009. – V. 33, N. 4. – P. 369-378. – ISSN 0134-2452. – (in Russian).
  27. Triandafilov, Y.R. Photonic-crystal Mikaelian lens / Y.R. Triandafilov, V.V. Kotlyar // Computer Optics. – 2007. – V. 31, N. 3. – P. 27-31. – ISSN 0134-2452. – (in Russian).
  28. Shuyupova, Y.О. Calculating the modes in photonic crystal fiber using FIMMWAVE software / Y.O. Shuyupova, V.V. Kotlyar // Computer Optics. – 2009. – V. 33, N. 1. – P. 27-36. – ISSN 0134-2452. – (in Russian).
  29. Leonhardt, O. Perfect imaging without negative refraction / O. Leonhardt // New J. Phys. – 2003. – Vol. 11. – P. 093040.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20