Распространение радиально-ограниченных вихревых пучков в ближней зоне.
Часть 1. Алгоритмы расчёта

Хонина С.Н., Устинов А.В., Ковалев А.А., Волотовский С.Г.

Аннотация:
На примере дифракции плоской волны на круглой апертуре в ближней зоне (порядка нескольких длин волн) проведено сравнение алгоритмов расчёта с использованием векторного интегрального преобразования Рэлея-Зоммерфельда (РЗ) и разложения по плоским волнам  (ПВ) по точности и скорости вычислений.
В скалярном случае, что соответствует вычислению поперечных компонент электрического поля, результаты различаются только в очень близкой к апертуре области.
В векторном случае при расчёте продольной компоненты в методе ПВ возникает особенность в области спектральных частот, радиус которых близок к единице. Предложены различные варианты обхода этой особенности. На расстоянии нескольких длин волн результаты двух рассматриваемых алгоритмов совпадают и отличаются от полученных с помощью конечно-разностного временного метода (FDTD) только масштабно (среднеквадратичное отклонение с учетом масштаба составляет менее 2%). Таким образом, рассмотренные в данной работе алгоритмы позволяют получать за существенно меньшее время структурно верную (но несколько завышенную по амплитуде) картину дифракции в ближней зоне. Такая амплитудная «завышенность» может быть связана с тем, что рассмотренные методы РЗ и ПВ не подразумевают наличия y-компоненты в дифракционной картине изначально x?поляризованного поля. Во второй части статьи рассматривается модификация метода ПВ, позволяющая учесть наличие всех векторных компонент.

Abstract:
On an example of plane wave diffraction by a circular aperture in a near zone (the order of several wavelengths) comparison of calculation algorithms such as vectorial Rayleigh-Sommerfeld diffraction integral (RS) and plane wave expansion (PWE) on accuracy and speed of calculations is executed.
In a scalar case that corresponds to calculation of a cross-section components of an electric field, results differ only in area very close to the aperture.
In a vector case at calculation of the longitudinal component in PWE method there is a singularity in the domain of spectral frequencies which radius is close to unit. Various variants of avoiding of this singularity are offered. On distance of several wavelengths results of two considered algorithms coincide and differ from finite-difference time domain (FDTD) method only in scale (the root-mean-square deviation with account of scale makes less than 2%). Thus, the algorithms considered in given work allow to receive for essentially smaller time structurally true (but a little overestimated on amplitude) a picture of diffraction in a near zone. Such “overestimation” of amplitude can be connected by that considered RS and PWE methods do not mean presence y-components in diffraction picture of initially x-polarized field. In the second part of the paper a modification of PWE method allowing to consider presence of all vector components is considered.

Ключевые слова :
дифракционный интеграл Рэлея-Зоммерфельда, разложение по плоским волнам, дифракция на круглой апертуре, вихревой пучок.

Key words:
Rayleigh-Sommerfeld diffraction integral, plane wave expansion, diffraction by a circular aperture, vortical beam.

Литература:

  1. Martinez-Herrero, R. Vectorial structure of nonparaxial electromagnetic beams / R. Martinez-Herrero, P.M. Mejias, S. Bosch, A. Carnicer // J. Opt. Soc. Am. A. - 2001. - Vol. 18. - P. 1678-1680.
  2. Ciattoni, A. Vectorial analytical description of propagation of a highly nonparaxial beam / A. Ciattoni, B. Crosignani, and P. D. Porto // Opt. Commun. - 2002. - Vol. 202. - P. 17-20.
  3. Guha, Sh. Description of light propagation through a circular aperture using nonparaxial vector diffraction theory / Shekhar Guha, Glen D. Gillen // Optics Express. - 2005. - Vol. 13, No. 5. - P. 1424-1447.
  4. Guo, H. Vector plane wave spectrum of an arbitrary polarized electromagnetic wave / Hanming Guo, Jiabi Chen, Songlin Zhuang // Optics Express. - 2006. - Vol. 14, No. 6. - P. 2095-2100.
  5. Deng, D. Analytical vectorial structure of radially polarized light beams / Dongmei Deng and Qi Guo // Optics Letters. - 2007. - Vol. 32, No. 18. - P. 2711-2713.
  6. Anokhov, S.P. Plane wave diffraction by a perfectly transparent half-plane / Sergey P. Anokhov // J. Opt. Soc. Am. A. - 2007. - Vol. 24, No. 9. - P. 2493-2498.
  7. Ковалёв, А.А. Непараксиальная векторная дифракция гауссового пучка на спиральной фазовой пластинке / А.А. Ковалёв, В.В. Котляр // Компьютерная оптика. - 2007. - Том 31, № 4. - С. 19-22.
  8. Wu, G. Analytical vectorial structure of hollow Gaussian beams in the far ?eld / Guohua Wu, Qihong Lou, Jun Zhou // Optics Express. - 2008. - Vol. 16, No. 9. - P. 6417-6424.
  9. Zhou, G. The analytical vectorial structure of a nonparaxial Gaussian beam close to the source / Guoquan Zhou // Optics Express. - 2008. - Vol. 16, No. 6. - P. 3504-3514.
  10. Delen, N. Verification and comparison of a fast Fourier transform-based full diffraction method for tilted and offset planes / Nuri Delen and Brian Hooker // Applied Optics. - 2001. - Vol. 40, No. 21. - P. 3525-3531.
  11. Cooper, I.J. Numerical integration of diffraction integrals for a circular aperture / I.J. Cooper, C.J.R. Sheppard, M. Sharma // Optik. - 2002. - Vol. 113, No. 7. - P. 293-298.
  12. Duan, K. A comparison of the vectorial nonparaxial approach with Fresnel and Fraunhofer approximations / Kailiang Duan, Baida Lu // Optik. - 2004. - Vol. 115, No. 5. - P. 218-222.
  13. Cooper, I.J. The numerical integration of fundamental di?raction integrals for converging polarized spherical waves using a two-dimensional form of Simpson’s 1/3 Rule / I.J. Cooper, C.J.R. Sheppard, and M. Roy // Journal of Modern Optics. - 2005. - Vol. 52, No. 8. - P. 1123-1134.
  14. Veerman, J.A.C. Calculation of the Rayleigh-Sommer­feld diffraction integral by exact integration of the fast oscillating factor / Jan A.C. Veerman, Jurgen J. Rusch, and H. Paul Urbach // J. Opt. Soc. Am. A. - 2005. - Vol. 22, No. 4. - P. 636-646.
  15. Zhao, Zh. Focusing and diffraction by an optical lens and a small circular aperture / Zhiguo Zhao, Kailiang Duan, Baida Lu // Optik. - 2006. - V. 117. - P. 253-258.
  16. Wang, X. Numerical calculation of a converging vector electromagnetic wave diffracted by an aperture by using Borgnis potentials. I. General theory / Xueen Wang, Zhaozhong Fan and Tiantong Tang // J. Opt. Soc. Am. A. - 2006. - Vol. 23, No. 4. - P. 872-877.
  17. Shen, F. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula / Fabin Shen and Anbo Wang // Applied Optics. - 2006. - Vol. 45, No. 6. - P. 1102-1110.
  18. Kotlyar, V.V. Sharp focus area of radially-polarized Gaussian beam by propagation through an axicon / V.V. Kotlyar, A.A. Kovalev, S.S. Stafeev // Prog. In Electr. Res. C. - 2008. - Vol. 5. - P. 35-43.
  19. Nascov, V. Fast computation algorithm for the Rayleigh-Sommerfeld diffraction formula using a type of scaled convolution / Victor Nascov and Petre Catalin Logofatu // Applied Optics. - 2009. - Vol. 48, No. 22. - P. 4310-4319.
  20. Matsushima, K. Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields / Kyoji Matsushima, Tomoyoshi Shimobaba // Optics Express. - 2009. - Vol. 17, No. 22. - P. 19662-19673.
  21. Устинов, А.В. Быстрый способ вычисления интеграла Рэлея-Зоммерфельда первого типа // Компьютерная оптика. - 2009. - Т. 33, № 4. - С. 412-419
  22.  Osterberg, H. Closed  Solutions  of Rayleigh's  Diffrac-tion  Integral  for Axial Points / H. Osterberg and L.W. Smith // J. Opt. Soc. Am. - 1961. - Vol. 51. - P. 1050-1054.
  23. Wolf, E. Comparison of the Kirchhoff and the Rayleigh-Sommerfeld Theories of Diffraction at an Aperture / E. Wolf, E.W. Marchand // J. Opt. Soc. Am. - 1964. - Vol. 54(5). - P. 587-594.
  24. Gravelsaeter, T. Diffraction by circular apertures. 1: Method of linear phase and amplitude approximation / Tore Gravelsaeter and Jakob J. Stamnes // Applied Optics. - 1982. - Vol. 21, No. 20. - P. 3644-3651.
  25. Sheppard, C.J.R. Diffraction by a circular  aperture: a generalization of Fresnel diffraction theory / C.J.R. Sheppard, M. Hrynevych // J. Opt. Soc. Am. A. - 1992. - Vol. 9, No. 2. - P. 274-281.
  26. Mielenz, K.D. Optical Diffraction in Close Proximity to Plane Apertures. I. Boundary-Value Solutions for Circular Apertures and Slits / Klaus D. Mielenz // J. Res. Natl. Inst. Stand. Technol. - 2002. - Vol. 107. - P. 355-362.
  27. Romero, J.A. Vectorial approach to Huygens’s principle for plane waves: circular aperture and zone plates / Julio A. Romero and Luis Hernández // J. Opt. Soc. Am. A. - 2006. - Vol. 23, No. 5. - P. 1141-1145.
  28. Romero, J.A. Diffraction by a circular aperture: an application of the vectorial theory of Huygens’s principle in the near ?eld / J.A. Romero and L. Hernández // J. Opt. Soc. Am. A. - 2008. - Vol. 25, No. 8. - P. 2040-2043.
  29. Li, J. The rigorous electromagnetic theory of the diffraction of vector beams by a circular aperture / Jianlong Li, Shifu Zhu, Baida Lu // Opt. Commun. - 2009. - Vol. 282. - P. 4475-4480.
  30. Born, M. Principles of Optics / M. Born, E. Wolf - 6th ed. - Pergamon, Oxford, 1980. - Chap. 8.3.
  31. Andrews, C.L. Diffraction pattern in a circular aperture measured in the microwave region / C.L. Andrews // J. Appl. Phys. - 1950. - Vol. 21. - P. 761-767.
  32. Silver, S. Microwave aperture antennas and diffraction theory / S. Silver // J. Opt. Soc. Am. - 1962. - Vol. 52. - P. 131-139.
  33. Totzeck, M. Validity of the scalar Kirchhoff and Rayleigh-Sommerfeld diffraction theories in the near field of small phase objects / M. Totzeck // J. Opt. Soc. Am. A. - 1991. - V. 8, No. 1. - P. 27-32.
  34. Tsoy, V.I. The use of Kirchho? approach for the calculation of the near ?eld amplitudes of electromagnetic ?eld / V.I. Tsoy, L.A. Melnikov // Optics Communications. - 2005. - V. 256. - P. 1-9.
  35. Luneburg, R.K. Mathematical Theory of Optics / R.K. Luneburg - University of California Press, Berkeley, California, 1966.
  36. Carter, W.H. Electromagnetic Field of a Gaussian Beam with an Elliptical Cross Section / W.H. Carter // J. Opt. Soc. Am. A. - 1972. - Vol. 62, No. 10. - P. 1195-1201.
  37. Agrawal, G.P. Gaussian beam propagation beyond the paraxial approximation / G.P. Agrawal, D.N. Pattanayak // J. Opt. Soc. Am. A. - 1979. - Vol. 69, No. 4. - P. 575-578.
  38. Marathay, A.S. On the usual approximation used in the Rayleigh-Sommerfeld diffraction theory / A.S. Marathay, J.F. McCalmont // J. Opt. Soc. Am. A. - 2004. - Vol. 21. - P. 510-516.
  39. Хонина, С.Н. Алгоритмы быстрого расчёта дифракции радиально-вихревых лазерных полей на микроапертуре / С.Н. Хонина, А.В. Устинов, С.Г. Волотовский, М.А. Ананьин // Известия Самарского научного центра РАН. - 2010. - № 12(3). - С. 15-25.
  40. Goodman, J.W. Introduction to Fourier Optics / J.W. Goodman - McGraw-Hill, 1968. - Chap. 3.
  41. Виноградова, М.Б. Теория волн / М.Б. Виноградова, О.В. Руденко, А.П. Сухоруков - М.: Наука. Главная редакция физико-математической литературы, 1979. - 384 с.
  42. Балалаев, С.А. Реализация быстрого алгоритма преобразования Кирхгофа на примере бесселевых пучков / С.А. Балалаев // Компьютерная оптика. - 2006. - № 30. - С. 69-73.
  43. Gradshteyn, S. Table of Integrals, Series, and Products / S. Gradshteyn and I.M. Ryzhik - Elsevier, 2007.
  44. Zhang, Y. Vector propagation of radially polarized Gaussian beams diffracted by an axicon / Yaoju Zhang, Ling Wang, Chongwei Zheng // J. Opt. Soc. Am. A. - 2005. - Vol. 22, No. 11. - P. 2542-2542.
  45. Mei, Z. Nonparaxial analysis of vectorial Laguerre-Bes­sel-Gaussian beams / Z. Mei and D. Zhao // Opt. Express. - 2007. - Vol. 15. - P. 11942-11951.
  46. Helseth, L.E. Optical vortices in focal regions / L.E. Helseth // Opt. Commun. - 2004. - Vol. 229. - P. 85-91.

References:

  1. Martinez-Herrero, R. Vectorial structure of nonparaxial electromagnetic beams / R. Martinez-Herrero, P.M. Me­jias, S. Bosch, A. Carnicer // J. Opt. Soc. Am. A. - 2001. - Vol. 18. - P. 1678-1680.
  2. Ciattoni, A. Vectorial analytical description of propagation of a highly nonparaxial beam / A. Ciattoni, B. Crosignani, and P. D. Porto // Opt. Commun. - 2002. - Vol. 202. - P. 17-20.
  3. Guha, Sh. Description of light propagation through a circular aperture using nonparaxial vector diffraction theory / Shekhar Guha, Glen D. Gillen // Optics Express. - 2005. - Vol. 13, No. 5. - P. 1424-1447.
  4. Guo, H. Vector plane wave spectrum of an arbitrary polarized electromagnetic wave / Hanming Guo, Jiabi Chen, Songlin Zhuang // Optics Express. - 2006. - Vol. 14, No. 6. - P. 2095-2100.
  5. Deng, D. Analytical vectorial structure of radially polarized light beams / Dongmei Deng and Qi Guo // Optics Letters. - 2007. - Vol. 32, No. 18. - P. 2711-2713.
  6. Anokhov, S.P. Plane wave diffraction by a perfectly transparent half-plane / Sergey P. Anokhov // J. Opt. Soc. Am. A. - 2007. - Vol. 24, No. 9. - P. 2493-2498.
  7. Kovalev, A.A., Kotlyar, V.V. Nonparaxial vectorial diffraction of the Gaussian beam by a spiral phase plate // Computer Optics. - 2007. - Vol. 31, N 4. - P. 19-22.
  8. Wu, G. Analytical vectorial structure of hollow Gaussian beams in the far ?eld / Guohua Wu, Qihong Lou, Jun Zhou // Optics Express. - 2008. - Vol. 16, No. 9. - P. 6417-6424.
  9. Zhou, G. The analytical vectorial structure of a nonparaxial Gaussian beam close to the source / Guoquan Zhou // Optics Express. - 2008. - Vol. 16, No. 6. - P. 3504-3514.
  10. Delen, N. Verification and comparison of a fast Fourier transform-based full diffraction method for tilted and offset planes / Nuri Delen and Brian Hooker // Applied Optics. - 2001. - Vol. 40, No. 21. - P. 3525-3531.
  11. Cooper, I.J. Numerical integration of diffraction integrals for a circular aperture / I.J. Cooper, C.J.R. Sheppard, M. Sharma // Optik. - 2002. - Vol. 113, No. 7. - P. 293-298.
  12. Duan, K. A comparison of the vectorial nonparaxial approach with Fresnel and Fraunhofer approximations / Kailiang Duan, Baida Lu // Optik. - 2004. - Vol. 115, No. 5. - P. 218-222.
  13. Cooper, I.J. The numerical integration of fundamental di?raction integrals for converging polarized spherical waves using a two-dimensional form of Simpson’s 1/3 Rule / I.J. Cooper, C.J.R. Sheppard, and M. Roy // Journal of Modern Optics. - 2005. - Vol. 52, No. 8. - P. 1123-1134.
  14. Veerman, J.A.C. Calculation of the Rayleigh-Sommer­feld diffraction integral by exact integration of the fast oscillating factor / Jan A.C. Veerman, Jurgen J. Rusch, and H. Paul Urbach // J. Opt. Soc. Am. A. - 2005. - Vol. 22, No. 4. - P. 636-646.
  15. Zhao, Zh. Focusing and diffraction by an optical lens and a small circular aperture / Zhiguo Zhao, Kailiang Duan, Baida Lu // Optik. - 2006. - V. 117. - P. 253-258.
  16. Wang, X. Numerical calculation of a converging vector electromagnetic wave diffracted by an aperture by using Borgnis potentials. I. General theory / Xueen Wang, Zhaozhong Fan and Tiantong Tang // J. Opt. Soc. Am. A. - 2006. - Vol. 23, No. 4. - P. 872-877.
  17. Shen, F. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula / Fabin Shen and Anbo Wang // Applied Optics. - 2006. - Vol. 45, No. 6. - P. 1102-1110.
  18. Kotlyar, V.V. Sharp focus area of radially-polarized Gaussian beam by propagation through an axicon / V.V. Kotlyar, A.A. Kovalev, S.S. Stafeev // Prog. In Electr. Res. C. - 2008. - Vol. 5. - P. 35-43.
  19. Nascov, V. Fast computation algorithm for the Rayleigh-Sommerfeld diffraction formula using a type of scaled convolution / Victor Nascov and Petre Catalin Logofatu // Applied Optics. - 2009. - Vol. 48, No. 22. - P. 4310-4319.
  20. Matsushima, K. Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields, / Kyoji Matsushima, Tomoyoshi Shimobaba // Optics Express. - 2009. - Vol. 17, No. 22. - P. 19662-19673.
  21. Ustinov, A.V. The fast way for calculation of first class Rayleigh-Sommerfeld integral // Computer Optics. - 2009. - V. 33, N 4. - P. 412-419 [in Russian]
  22.  Osterberg, H. Closed  Solutions  of Rayleigh's  Diffrac-tion  Integral  for Axial Points / H. Osterberg and L.W. Smith // J. Opt. Soc. Am. - 1961. - Vol. 51. - P. 1050-1054.
  23. Wolf, E. Comparison of the Kirchhoff and the Rayleigh-Sommerfeld Theories of Diffraction at an Aperture / E. Wolf, E.W. Marchand // J. Opt. Soc. Am. - 1964. - Vol. 54(5). - P. 587-594.
  24. Gravelsaeter, T. Diffraction by circular apertures. 1: Method of linear phase and amplitude approximation / Tore Gravelsaeter and Jakob J. Stamnes // Applied Optics. - 1982. - Vol. 21, No. 20. - P. 3644-3651.
  25. Sheppard, C.J.R. Diffraction by a circular  aperture: a generalization of Fresnel diffraction theory / C.J.R. Sheppard, M. Hrynevych // J. Opt. Soc. Am. A. - 1992. - Vol. 9, No. 2. - P. 274-281.
  26. Mielenz, K.D. Optical Diffraction in Close Proximity to Plane Apertures. I. Boundary-Value Solutions for Circular Apertures and Slits / Klaus D. Mielenz // J. Res. Natl. Inst. Stand. Technol. - 2002. - Vol. 107. - P. 355-362.
  27. Romero, J.A. Vectorial approach to Huygens’s principle for plane waves: circular aperture and zone plates / Julio A. Romero and Luis Hernández // J. Opt. Soc. Am. A. - 2006. - Vol. 23, No. 5. - P. 1141-1145.
  28. Romero, J.A. Diffraction by a circular aperture: an application of the vectorial theory of Huygens’s principle in the near ?eld / J.A. Romero and L. Hernández // J. Opt. Soc. Am. A. - 2008. - Vol. 25, No. 8. - P. 2040-2043.
  29. Li, J. The rigorous electromagnetic theory of the diffraction of vector beams by a circular aperture / Jianlong Li, Shifu Zhu, Baida Lu // Opt. Commun. - 2009. - Vol. 282. - P. 4475-4480.
  30. Born, M., Wolf, E. Principles of Optics, 6th ed. - Pergamon, Oxford, 1980. - Chap. 8.3.
  31. Andrews, C.L. Diffraction pattern in a circular aperture measured in the microwave region // J. Appl. Phys. - 1950. - Vol. 21. - P. 761-767.
  32. Silver, S. Microwave aperture antennas and diffraction theory // J. Opt. Soc. Am. - 1962. - Vol. 52. - P. 131-139.
  33. Totzeck, M. Validity of the scalar Kirchhoff and Rayleigh-Sommerfeld diffraction theories in the near field of small phase objects / M. Totzeck // J. Opt. Soc. Am. A. - 1991. - V. 8, No. 1. - P. 27-32.
  34. Tsoy, V.I. The use of Kirchho? approach for the calculation of the near ?eld amplitudes of electromagnetic ?eld / V.I. Tsoy, L.A. Melnikov // Optics Communications - 2005. - V. 256. - P. 1-9.
  35. Luneburg, R.K. Mathematical Theory of Optics - University of California Press, Berkeley, California, 1966.
  36. Carter, W.H. Electromagnetic Field of a Gaussian Beam with an Elliptical Cross Section // J. Opt. Soc. Am. A. - 1972. - Vol. 62, No. 10. - P. 1195-1201.
  37. Agrawal, G.P. Gaussian beam propagation beyond the paraxial approximation / G.P. Agrawal, D.N. Pattanayak // J. Opt. Soc. Am. A. - 1979. - Vol. 69, No. 4. - P. 575-578.
  38. Marathay, A.S. On the usual approximation used in the Rayleigh-Sommerfeld diffraction theory / A.S. Marathay, J.F. McCalmont // J. Opt. Soc. Am. A. - 2004. - Vol. 21. - P. 510-516.
  39. Khonina, S.N. Fast calculation algorithms for diffraction of radially-vortical laser fields on the microaperture / S.N. Khoni­na, A.V. Ustinov, S.G. Volotovsky, M.A. Ananin // Izvest. SNC RAS - 2010. - V. 12(3). - P. 15-25. - (in Russian).
  40. Goodman, J.W. Introduction to Fourier Optics - McGraw-Hill, 1968. - Chap. 3.
  41. Vinogradova, M.B. Wave Theory, 2nd ed. / M.B. Vinogradova, O.V. Rudenko, and A.P. Sukhorukov - Moscow, “Nauka” Publisher, 1979. - (in Russian).
  42. Balalayev, S.А. Realisation of fast algorithm of Kirchhoff's diffraction integral on an example of Bessel modes / S.A. Ba­lalayev, S.N. Khonina // Computer Optics. - 2006. - V. 30. - P. 69-73. - (in Russian).
  43. Gradshteyn, S. Table of Integrals, Series, and Products / S. Gradshteyn and I.M. Ryzhik - Elsevier, 2007.
  44. Zhang, Y. Vector propagation of radially polarized Gaussian beams diffracted by an axicon / Yaoju Zhang, Ling Wang, Chongwei Zheng // J. Opt. Soc. Am. A. - 2005. - Vol. 22, No. 11. - P. 2542-2542.
  45. Mei, Z. Nonparaxial analysis of vectorial Laguerre-Bes­sel-Gaussian beams / Z. Mei and D. Zhao // Opt. Express. - 2007. - Vol. 15. - P. 11942-11951.
  46. Helseth, L.E. Optical vortices in focal regions // Opt. Commun. - 2004. - Vol. 229. - P. 85-91.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20