Механизм сверхразрешения в планарной гиперболической секансной линзе
Котляр В.В., Ковалев А.А., Налимов А.Г., Триандафилов Я.Р.

Аннотация:
Получено интегральное представление для ТЕ-волны в 2D среде от точечного источника, находящегося вне этой среды (линия раздела сред – прямая), и аналогичное представление для светового поля за плоскопараллельной пластиной. При этом выделено три типа волн, дающих вклад в световое поле: распространяющиеся волны, поверхностные волны первого и второго типов. Произведено сравнение числовых апертур рефракционных линз ближнего поля (SIL, NAIL) и планарной гиперболической секансной линзы, показано, что они близки между собой и отличаются для кремния всего на 5%. Моделирование с помощью программы FullWAVE показало, что добавление к градиентной гиперболической секансой линзе субволновой дифракционной решётки или замена такой линзы её бинарным аналогом приводят к уменьшению ширины фокусного пятна на 10% и 20% по сравнению с дифракционным пределом в данной среде.

Abstract:
Integral representation for a TE-wave from a point source in 2D medium, located outside of this medium, was obtained (border of a medium division – straight line). Similar representation for a light field inside and outside of flat-parallel film was obtained too. Three types of waves noticed, which give contributions in a light field: propagating waves, surface weaves of first and second types. Comparison of a numerical aperture of a refraction near field lenses (SIL, NAIL) and a planar hyperbolic secant lens conducted. It is shown, that this lens are close each other and distinguish in a 5%. It is shown by modeling in a FullWAVE program, that adding a subwave diffractive grating to a secant hyperbolic gradient lens, or replacing this lens on a binary analog helps to overcome a diffractive limit in the given medium with smaller width of the focus spot on a 10% and 20%.

Ключевые слова :
сверхразрешение, градиентная линза, секансная линза, линзы ближнего поля.

Key words:
superresolution, gradient lens, secant lens, near field lens.

Литература:

  1. Huang, K. Design of DOE for generating a needle of a strong longitudinally polarized field / K. Huang, P. Shi, X. Kang, X. Zhang [at al.] // Opt. Lett. – 2010. – V. 35, No. 7. – P. 965-967.
  2. Хонина, С.Н. Управление вкладом компонент векторного электрического поля в фокусе высокоапертурной линзы с помощью бинарных фазовых структур / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. – 2010. – Т. 34, № 1. – С. 58-68.
  3. Lee, J.Y. Near-field focusing and magnification thro­ugh self-assembled nanoscale spherical lenses / J.Y. Lee [at al.] // Nature. – 2009. – V. 460,08173. – P. 498-501.
  4. Goldstein, D.J. Resolution in light microscopy studied by computer simulations / D.J. Godstein // J. Microsc. – 1992. – V. 166. – P. 185-197.
  5. Novotny, L. Principles of Nano-Optics / L. Novotny, B. Hecht. – Cambridge University Press, 2006.
  6. Bouhelier, A. Plasmon-coupled tip-enhanced near-field optical microscopy / A. Bouhelier, J. Renger, M.R. Beverslu­is, L. Novotny // J. Microsc. – 2003. – V. 210. – P. 220-224.
  7. Karrai, K. Enhanced reflectivity contrast in confocal solid immersion lens microscopy / K. Karrai, X. Lorenz // Appl. Phys. Lett. – 2000. – V. 77, No. 21. – P. 3459-3461.
  8. Ippolito, S.B. High spatial resolution subsurface microscopy / S.B. Ippolito, B.B. Goldberg, M.S. Unlu // Appl. Phys. Lett. – 2001. – V. 78, No. 26. – P. 4071-4073.
  9. Koklu, F.H. Subsurface microscopy of integrated circuits with angular spectrum and polarization control / F.H. Koklu, S.B. Ippolito, B.B. Goldberg, M.S. Unlu // Opt. Lett. – 2009. – V. 34, No. 8. – P. 1261-1263.
  10. Karabacak, D.M. Diffraction of evanescent waves and nanomechanical displacement detection / D.M. Karabacak [et al.] // Opt. Lett. – 2007. – V. 32, No. 13. – P. 1881-1883.
  11. Mason, D.R. Enchanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses / D.R. Mason, M.V. Jouravlev, K.S. Kim // Opt. Lett. – 2010. – V. 35, No. 12. – P. 2007-2009.
  12. Котляр, В.В. Моды планарного градиентного гиперболического секансного волновода / В.В. Котляр, А.А. Ковалёв, Я.Р. Триандафилов, А.Г. Налимов // Компьютерная оптика. – 2010. – Т. 34, № 2. – С. 146-155.
  13. Котляр, В.В. Субволновая локализация света в волноводных структурах / В.В. Котляр, А.А. Ковалёв, Я.О Шуюпова, А.Г. Налимов, В.А. Сойфер // Компьютерная оптика. – 2010. – Т. 34, № 2. – С. 169-186.
  14. Зверев, В.А. Радиооптика / В.А. Зверев. – М.: Сов. Радио, 1975. – 304 с.
  15. Handmer, C.J. Blazing evanescent gtrating orders: a spectral approach to beating the Rayleigh limit / C.J. Handmer, [et al] // Opt. Lett. – 2010. – V. 35, No. 17. – P. 2846-2848.
  16. Thongrattanasiri, S. Analytical technique for subwavelength far field imaging / S. Thongrattanasiri [et al.] // App. Phys. Lett. – 2010. – V. 97. – P. 101103.

References:

  1. Huang, K. Design of DOE for generating a needle of a strong longitudinally polarized field / K. Huang, P. Shi, X. Kang, X. Zhang [at al.] // Opt. Lett. – 2010. – V. 35, No. 7. – P. 965-967.
  2. Khonina, S.N. Controlling of the components of vectors of electrical and magnetic fields in a focus of lens with a high aperture with aim of binary phase structures / S.N. Khonina, S.G. Volotovsky // Computer optics. – 2010. – V. 34, No. 1. – P. 58-68.
  3. Lee, J.Y. Near-field focusing and magnification thro­ugh self-assembled nanoscale spherical lenses / J.Y. Lee [at al.] // Nature. – 2009. – V. 460, 08173. – P. 498-501.
  4. Goldstein, D.J. Resolution in light microscopy studied by computer simulations / D.J. Godstein // J. Microsc. – 1992. – V. 166. – P. 185-197.
  5. Novotny, L. Principles of Nano-Optics / L. Novotny, B. Hecht. – Cambridge University Press, 2006.
  6. Bouhelier, A. Plasmon-coupled tip-enhanced near-field optical microscopy / A. Bouhelier, J. Renger, M.R. Beverslu­is, L. Novotny // J. Microsc. – 2003. – V. 210. – P. 220-224.
  7. Karrai, K. Enhanced reflectivity contrast in confocal solid immersion lens microscopy / K. Karrai, X. Lorenz // Appl. Phys. Lett. – 2000. – V. 77, No. 21. – P. 3459-3461.
  8. Ippolito, S.B. High spatial resolution subsurface microscopy / S.B. Ippolito, B.B. Goldberg, M.S. Unlu // Appl. Phys. Lett. – 2001. – V. 78, No. 26. – P. 4071-4073.
  9. Koklu, F.H. Subsurface microscopy of integrated circuits with angular spectrum and polarization control / F.H. Koklu, S.B. Ippolito, B.B. Goldberg, M.S. Unlu // Opt. Lett. – 2009. – V. 34, No. 8. – P. 1261-1263.
  10. Karabacak, D.M. Diffraction of evanescent waves and nanomechanical displacement detection / D.M. Karabacak [et al.] // Opt. Lett. – 2007. – V. 32, No. 13. – P. 1881-1883.
  11. Mason, D.R. Enchanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses / D.R. Mason, M.V. Jouravlev, K.S. Kim // Opt. Lett. – 2010. – V. 35, No. 12. – P. 2007-2009.
  12. Kotlyar, V.V. Modes of planar gradient secant hyperbolic waveguide / V.V. Kotlyar, A.A. Kovalev, Y.R. Triandafi­lov, A.G. Nalimov // Computer optics. – 2010. – V. 34, No. 2. – P. 146-155.
  13. Kotlyar, V.V. Subwave light localization in waveguide structures / V.V. Kotlyar, A.A. Kovalev, Y.O. Shujupova, A.G. Nalimov, V.A. Soifer // Computer optics. – 2010. – V. 34, No. 2. – P. 169-186.
  14. Zverev, V.A. Radio optics./ V.A. Zverev – M.: Sov. Radio, 1975. – 304 p.
  15. Handmer, C.J. Blazing evanescent gtrating orders: a spec­tral approach to beating the Rayleigh limit / C.J. Handmer [et al.] // Opt. Lett. – 2010. – V. 35, No. 17. – P. 2846-2848.
  16. Thongrattanasiri, S. Analytical technique for subwavelength far field imaging / S. Thongrattanasiri [et al.] // App. Phys. Lett. – 2010. – V. 97. – P. 101103.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846) 332-56-20