Сравнительное моделирование двумя методами острой фокусировки зонной пластинкой

Стафеев С.С., Котляр В.В.

Аннотация:
Промоделирована фокусировка радиально-поляризованной моды двумя методами: FDTD и с помощью формул Ричардса-Вольфа (РВ-формулы). Показано, что оба метода демонстрируют возможность преодоления зонной пластинкой с радиусом R = 20? дифракционного предела при освещении её модой R-TEM01 с радиусом ? = 10?. При расчёте методом FDTD преодоление дифракционного предела наблюдается для числовой апертуры, большей NA = 0,97, а по РВ-формулам – большей NA = 0,96. Относительная погрешность результатов вычисления диаметра фокального пятна этими двумя методами при этом не превышает 6%.

Abstract:
We simulated a focusing of radially-polarized mode using two methods: FDTD and Richards-Wolf equations. It was shown that both methods demonstrate the ability of overcoming the diffraction limit using a zone plate with radius R = 20? and R-TEM01 mode with radius ? = 10?. The overcoming of the diffraction limit was observed when numerical aperture of the zone plate was more than NA = 0,97 for FDTD-method and more than NA = 0,96 for Richards-Wolf equation.  The relative error of the width of the focal spot was less than 6%.

Ключевые слова :
острая фокусировка света, радиальная поляризация, зонная пластинка, радиальный FDTD-метод, формулы Ричардса-Вольфа.

Key words:
sharp focusing, radial polarization, zone plate, radial-FDTD, Richards-Wolf equation.

Литература (References):

  1. Lim, C.S. Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning / C.S. Lim, M.H. Hong, Y. Lin, Q. Xie, B.S. Luk’y­anchuk, A. Senthil Kumar, M. Rahman // Appl. Phys. Let. – 2006. – Vol. 89. – P. 191125.
  2. Terris, B.D. Near-field optical data storage / B.D. Terris, H.J. Mamin, D. Rugar // Appl. Phys. Let. – 1996. – Vol. 68. – P. 141.
  3. Dorn, R. Sharper Focus for a Radially Polarized Light Beam / R. Dorn, S. Quabis, G. Leuchs // Phys. Rev. Lett. – 2003. – Vol. 91, N 23. – P. 233901.
  4. Grosjean, T. Smallest focal spots / T. Grosjean, D. Courjon // Opt. Commun. – 2007. – Vol. 272. – P. 314-319.
  5. Davidson, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens / N. Davidson, N. Bokor // Opt. Lett. – 2004. – Vol. 29, N 12. – P. 1318-1320.
  6. Kalosha, V.P. Toward the subdiffraction focusing limit of optical superresolution / V.P. Kalosha, I. Golub // Opt. Lett. – 2007. – Vol. 32, N 24. – P. 3540-3542.
  7. Richards, B. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system / B. Richards, E. Wolf  // Proc. R. Soc. London A. – 1959. –Vol. 253. – P. 358-379.
  8. Youngworth, K.S. Focusing of high numerical aperture cylindrical vector beams / K.S. Youngworth, T.G. Brown  // Opt. Expr. – 2000. – Vol. 7. – P. 77-87.
  9. Debay, P. Das Verhalten von Lichtwellen in der Nahe eines Brennpunktes oder einer Brennlinie / P. Debay // Ann. d. Phys. – 1909. – Vol. 335, N 14. – P. 755-776.
  10. Taflove, A. Computational Electrodynamics: The Finite-Difference Time Domain Method. – 2nd ed. / A. Taflove, S.C. Hagness. – Artech House, 2000. – 852 p.
  11. Fu, Y. Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits / Y. Fu, Yu Liu, X. Zhou, Z. Xu, F. Fang // Opt. Exp. – 2010. – Vol. 18. – P. 3438-3443.
  12. Fu, Y. Plasmonic microzone plate: Superfocusing at visible regime / Y. Fu, W. Zhou, L.E.N. Lim, C.L. Du, X.G. Luo // Appl. Phys. Let. – 2007. – Vol. 91. – P. 061124.
  13. Mote, R.G. Near-field properties of zone plates in visible regime – New insights / R.G. Mote, S.F. Yu, B.K. Ng, W. Zhou, S.P. Lau // Opt. Express. – 2008. – Vol. 16. – P. 9554-9564.
  14. Lopez, L.C. Vectorial diffraction analysis of near-field focusing of perfect black Fresnel zone plates under various polarization states / L.C. Lopez, M.P. Molina, P.A. Gonzalez, S.B. Escarre, A.F. Gil, R.F. Madrigal, A.M. Cases // J. Light Technol. – 2011. – Vol. 29. –P. 822-829.
  15. Mote, R.G. Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states / R.G. Mote, S.F. Yu, W. Zhou, X.F. Li // Appl. Phys. Let. – 2009. – Vol. 95. – P. 191113.
  16. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa, S. Sato // J. Opt. Soc. Am. A. – 2007. – Vol. 24, N 6. – P. 1793-1798.
  17. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications / Q. Zhan // Advances in Optics and Photonics. – 2009. – Vol. 1. – P. 1-57.
  18. Kotlyar, V.V. Sharply focusing a radially polarized laser beam using a gradient Mikaelian’s microlens / V.V. Kotlyar, S.S. Stafeev // Opt. Commun. – 2009. – Vol. 282. –P. 459-464.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846) 332-56-20