Усиление обратного эффекта Фарадея в диэлектрических дифракционных решетках с волноводным слоем

Безус Е.А., Белотелов В.И., Досколович Л.Л., Звездин А.К.

Аннотация:
Рассмотрено явление усиления интенсивности электромагнитного поля в ближней зоне дифракционных структур с двумерной периодичностью, состоящих из диэлектрической дифракционной решётки и волноводного слоя. Показано, что в случае падения на структуру волны с круговой поляризацией наблюдается усиление обратного эффекта Фарадея. Величина обратного эффекта Фарадея в дифракционной структуре более чем в 40 раз превышает соответствующую величину для однородного слоя. Потенциальные применения рассматриваемых структур заключаются в возможностях локального управления намагниченностью, контроля интенсивности и усиления поля.

Abstract:
The phenomenon of the electromagnetic field concentration in the near-field of the diffraction structures with two-dimensional periodicity consisting of a dielectric diffraction grating and a waveguiding layer is considered. It is shown that in the case of circular polarization of the incident wave the inverse Faraday effect can be significantly increased. The value of the inverse Faraday effect in the diffraction structure in more than 40 times higher than that for a homogeneous layer. Potential applications of the studied structures are connected with the possibility of local control of the magnetization and the field enhancement.

Ключевые слова :
нанофотоника, обратный эффект Фарадея, затухающая волна, дифракционная решётка.

Key words:
nanophotonics, inverse Faraday effect, evanescent wave, diffraction grating.

Литература:

  1. Pitaevskii, L.P. Electric forces in a transparent dispersive medium / L.P. Pitaevskii // Sov. Phys. JETP. – 1961. – Vol. 12. – P. 1008-1013.
  2. Stanciu, C.D. All-Optical Magnetic Recording with Circularly Polarized Light / C.D. Stanciu, F. Hansteen, A.V. Ki­mel, A. Kirilyuk, A. Tsukamoto, A. Itoh, Th. Rasing // Phys. Rev. Lett. – 2007. – Vol. 99(4). – 047601 (4 p).
  3. Кругляк, В.В. Использование обратного магнитооптического эффекта Фарадея для генерации фемтосекундных импульсов тока / В.В. Кругляк, М.Е. Портной // Письма в ЖТФ. – 2005. – Т. 31, № 24. – С. 20-23.
  4. Hasegawa, Y. Remarkable Magneto-Optical Properties of Europium Selenide Nanoparticles with Wide Energy Gaps / Y. Hasegawa, T. Adachi, A. Tanaka, M. Afzaal, P. O’Bri­en, T. Doi, Y. Hinatsu, K. Fujita, K. Tanaka, T. Kawai // J. Am. Chem. Soc. – 2008. – Vol. 130(17). – P. 5710-5715.
  5. Belotelov, V.I. Magnetooptical properties of perforated metallic films / V.I. Belotelov, L.L. Doskolovich, V.A. Kotov, A.K. Zvezdin // Journal of Magnetism and Magnetic Materials. – 2007. – Vol. 310(2). – P. e843-e845.
  6. Belotelov, V.I. Inverse Faraday effect in plasmonic heterostructures / V.I. Belotelov, E.A. Bezus, L.L. Doskolovich, A.N. Kalish, A.K. Zvezdin // Journal of Physics: Conference Series. – 2010. – Vol. 200. – 092003 (4p).
  7. Tamir, T. Resonant scattering by multilayered dielectric gratings / T. Tamir, S. Zhang // J. Opt. Soc. Am. A. – 1997. – Vol. 14(7). – P. 1607-1616.
  8. Wei, C. Electric field enhancement in guided-mode resonance filters / C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, Z. Fan // Opt. Lett. – 2006. – Vol. 31(9). – P. 1223-1225.
  9. Bezus, E.A. Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskiy // Microelectronic Engineering. – 2011. – Vol. 88(2). – P. 170-174.
  10. Безус, Е.А. Формирование интерференционных картин затухающих электромагнитных волн для наноразмерной литографии с помощью волноводных дифракционных решёток / Е.А. Безус, Л.Л. Досколович, Н.Л. Казанский // Квантовая электроника. – 2011. – Т. 41, № 8. – С. 759-764.
  11. Bai, B. Reduction of computation time for crossed-grating problems: a group-theoretic approach / B. Bai, L. Li // J. Opt. Soc. Am. A. – 2004. – Vol. 21(10). – P. 1886-1894.
  12. Bai, B. Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with square symmetry / B. Bai, L. Li // J. Opt. Soc. Am. A. – 2006. – Vol. 23(3). – P. 572-580.
  13. Bezus, E.A. Grating-assisted generation of 2D surface plasmon interference patterns for nanoscale photolithography / E.A. Bezus, L.L. Doskolovich // Optics Communications. – 2010. – Vol. 283(10). – P. 2020-2025.
  14. Li, L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors / L. Li // J. Opt. A: Pure Appl. Opt. – 2003. – Vol. 5(4). – P. 345-355.

References:

  1. Pitaevskii, L.P. Electric forces in a transparent dispersive medium / L.P. Pitaevskii // Sov. Phys. JETP. – 1961. – Vol. 12. – P. 1008-1013.
  2. Stanciu, C.D. All-Optical Magnetic Recording with Circularly Polarized Light / C.D. Stanciu, F. Hansteen, A.V. Ki­mel, A. Kirilyuk, A. Tsukamoto, A. Itoh, Th. Rasing // Phys. Rev. Lett. – 2007. – Vol. 99(4). – 047601 (4 p).
  3. Kruglyak, V.V. Generation of femtosecond current pulses using the inverse magneto-optical Faraday effect / V.V. Kruglyak, M.E. Portnoi // Technical Physics Letters. – 2005. – Vol. 31(12). – P. 1047-1048. – (In Russian).
  4. Hasegawa, Y. Remarkable Magneto-Optical Properties of Europium Selenide Nanoparticles with Wide Energy Gaps / Y. Hasegawa, T. Adachi, A. Tanaka, M. Afzaal, P. O’Bri­en, T. Doi, Y. Hinatsu, K. Fujita, K. Tanaka, T. Kawai // J. Am. Chem. Soc. – 2008. – Vol. 130(17). – P. 5710-5715.
  5. Belotelov, V.I. Magnetooptical properties of perforated metallic films / V.I. Belotelov, L.L. Doskolovich, V.A. Ko­tov, A.K. Zvezdin // Journal of Magnetism and Magnetic Materials. – 2007. – Vol. 310(2). – P. e843-e845.
  6. Belotelov, V.I. Inverse Faraday effect in plasmonic heterostructures / V.I. Belotelov, E.A. Bezus, L.L. Doskolovich, A.N. Kalish, A.K. Zvezdin // Journal of Physics: Conference Series. – 2010. – Vol. 200. – 092003 (4p).
  7. Tamir, T. Resonant scattering by multilayered dielectric gratings / T. Tamir, S. Zhang // J. Opt. Soc. Am. A. – 1997. – Vol. 14(7). – P. 1607-1616.
  8. Wei, C. Electric field enhancement in guided-mode resonance filters / C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, Z. Fan // Opt. Lett. – 2006. – Vol. 31(9). – P. 1223-1225.
  9. Bezus, E.A. Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskiy // Microelectronic Engineering. – 2011. – Vol. 88(2). – P. 170-174.
  10. Bezus, E.A. Interference pattern generation in evanescent electromagnetic waves for nanoscale lithography using waveguide diffraction gratings / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskiy // Quantum Electron. – 2011. – Vol. 41(8). – P. 759-764.
  11. Bai, B. Reduction of computation time for crossed-grating problems: a group-theoretic approach / B. Bai, L. Li // J. Opt. Soc. Am. A. – 2004. – Vol. 21(10). – P. 1886-1894.
  12. Bai, B. Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with square symmetry / B. Bai, L. Li // J. Opt. Soc. Am. A. – 2006. – Vol. 23(3). – P. 572-580.
  13. Bezus, E.A. Grating-assisted generation of 2D surface plasmon interference patterns for nanoscale photolithography / E.A. Bezus, L.L. Doskolovich // Optics Communications. – 2010. – Vol. 283(10). – P. 2020-2025.
  14. Li, L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors / L. Li // J. Opt. A: Pure Appl. Opt. – 2003. – Vol. 5(4). – P. 345-355.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846) 332-56-20