Аннотация:
В статье проанализированы некоторые известные результаты о движении осциллятора Блоха в кристалле в импульсном представлении. Показано, что описание движения электрона в изложении ряда авторов является неполным. На самом деле, точное описание поведения электрона в кристаллической решётке возможно только на основе решения уравнения Шрёдингера в импульсном представлении. В работе получены приближённые решения уравнения Шрёдингера для электрона в периодическом потенциале кристаллической решётки и уравнения для эволюции средних значений оператора импульса и координаты. Для описания поведения электрона в кристаллической решётке при наличии однородного электрического поля и возмущения, вызванного внешней электромагнитной волной, использована теория возмущений. Представленные методы в дальнейшем можно использовать для расчёта оптических устройств, в том числе оптических транзисторов.
Abstract:
In article some known results about Bloch Oscillations movement in a crystal in pulse representation are considered. We emphasize that the electron movement description is incomplete in a some authors statement. Actually, the exact description of electron behaviour in a crystal lattice is possible only on the basis of Schrödinger equation decision in pulse representation. The approached decisions of Schrödinger equation for electron behaviour in periodic potential of a crystal lattice and the equation for evolution of average values of the impulse and coordinate operator are received. For the electron behaviour description in a crystal lattice presence of homogeneous electric field and the indignation caused by an external electromagnetic wave the theory of indignations is used. The presented methods can be used further for calculation of optical devices including optical transistors.
Ключевые слова
:
уравнение Шрёдингера, импульсное представление, кристаллическая решётка, квазиимпульс
Key words:
Schrödinger equation, pulse representation, a crystal lattice, momentum representation
Литература (References):
- Altarelli, M. Envelope function approach to electronic states in heterostructures, in interfaces, quantum well and superlattice / ed. by R. Leavens and R. Taylor. – London: Plenum, 1988. – P. 43.
- Bentosela, F. Schrodinger operators with an electric field and random or deterministic potentials / F. Bentosela, R. Carmona, P. Duclos, B. Simon, B. Souillard and R. Weder // Communications in Mathematical Physics. – 1983. – Vol. 88. – P. 387-397.
- Bloch, F. Über die quantenmechanik der elektronen in kristallgittern / F. Bloch // Z. Phys. – 1928. – Vol. 52. – P. 555-600.
- Bouchard, A.M. Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices / A.M. Bouchard and M. Luban // Phys. Rev. – 1995, August 15. – Vol. 52, Issue 7. – P. 5105-5123.
- Callaway, J. Quantum theory of the solid state / J. Callaway. – New-York: Academic Press, 1974. – 385 p.
- Carusotto, I. Sensitive measurement of forces at micron scale using Bloch oscillations of ultracold atoms / I. Carusotto, L. Pitaevskii, S. Stringari, G. Modugno, M. Inguscio // Physical Review Letters. – 2005. – Vol. 95, Issue 9. – P. 093202.
- Esaki, L. Superlattice and negative differential conductivity in semiconductors / L. Esaki and R. Tsu // IBM Journal of Research and Development. – 1970. – Vol. 14. – P. 61-65.
- Gluck, M. Wannier-Stark resonances in optical and semiconductor superlattices / M. Gluck, A.R. Kolovsky and H.J. Korsch // Physics Reports. – 2001. – Vol. 366, Issue 3. – 94 p.
- Grecchi, V. Stark ladder of resonances: Wannier ladders and perturbation theory / V. Grecchi, M. Maioli and A. Sacchetti // Communications in Mathematical Physics. – 1994. – Vol. 159. – P. 605.
- Grecchi, V. Metastable Bloch Oscillators / V. Grecchi and A. Sacchetti // Phys. Rev. Lett. – 1997. – Vol. 78. – P. 4474.
- Grecchi, V. Lifetime of the Wannier-Stark resonances and perturbationtheory / V. Grecchi and A. Sacchetti // Communications in Mathematical Physics. – 1997. – Vol. 185, Issue 2. – P. 359-378.
- Grecchi, V. Wannier-Bloch Oscillators / V. Grecchi and A. Sacchetti // Communications in Mathematical Physics. – 1998. – Vol. 197, Issue 3. – P. 553-569.
- Grecchi, V. Acceleration theorem for Bloch oscillators / V. Grecchi and A. Sacchetti // Phys. Rev. B. – 2001. Vol. 63, Issue 21. – P. 1-4.
- Hartmann, T. Dynamics of Block oscillations / T. Hartmann, F. Keck, H.J. Korsch and S. Mossmann // New Journal of Physics. – 2004. – Vol. 6. – P. 2-25.
- Holthaus, M. Bloch oscillations and Zener breakdown in an optical lattice / M. Holthaus // J. Opt. B: Quantum Semiclass. Opt. – 2000. – Vol. 2, Issue 5. – P. 589-604.
- Houston, H.V. Acceleration of electrons in a crystal lattice / H.V. Houston // Phys. Rev. – 1940. – Vol. 57. – P. 184-186.
- Hövermann, F. Semiclassical limit for the Schrödinger equation with a short scale periodic potential / F. Hövermann, H. Spohn and S. Teufel // Communications in Mathematical Physics. – 2001. – Vol. 215, Issue 3. – P. 609-629.
- Kittel, C. Quantum theory of solids. 2nd edition / C. Kittel. – New-York: John Wiley, 1987.
- Lyssenko, V.G. Direct measurement of the spatial displacement of Bloch-oscillating electrons in semiconductor superlattices / V.G. Lyssenko, G. Valušis, F. Löser, T. Hasche, K. Leo, M.M. Dignam and K. Köhler // Phys. Rev. Lett. – 1997. – Vol. 79. – P. 301-304.
- Nenciu, G. Dynamics of band electrons in electric and magnetic fields. Rigorous justification of the effective Hamiltonians / G. Nenciu // Reviews of Modern Physics. – 1991. – Vol. 63(1). – P. 91-127.
- Wacker, A. Semiconductor superlattices: A model system for nonlinear transport / A. Wacker // Physics Reports. – 2002. – Vol. 357. – P. 1-111.
- Wannier, G.H. Wave functions and effective Hamiltonian for Bloch electrons in an electric field / G.H. Wannier // Phys. Rev. – 1960. – Vol. 117(2). – P. 432-439.
- Wannier, G.H. Dynamics of band electrons in electric and magnetic fields / G.H. Wannier // Reviews of Modern Physics. – 1962. – Vol. 34(4). – P. 645-655.
- Zener, C. A theory of electrical breakdown of solid dielectrics / C. Zener // Proc. Roy. Soc. (London). – 1934. – Vol. A145. – P. 523-529.
- Кошляков, Н.С. Уравнения в частных производных математической физики / Н.С. Кошляков, Э.Б. Глинер, М.М. Смирнов – М.: Высшая школа, 1970. – 712 с. (Koshlyakov, N. S. Partial differential equations of mathematical physics // N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov – Moscow: High School, 1970. – 712 p.)
© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20