Исследование погрешности разностного решения однонаправленного уравнения Гельмгольца методом вычислительного эксперимента
Дегтярёв А.А., Козлова Е.С.
Аннотация:
Рассматривается вопрос об исследовании сходимости разностной схемы для однонаправленного уравнения Гельмгольца. Основное внимание уделено экспериментальному исследованию скорости сходимости сеточного решения в равномерной и среднеквадратической нормах для линейного, а также нелинейного варианта уравнения Гельмгольца, учитывающего эффект «самовоздействия». Расчёты проводились на суперкомпьютере «Сергей Королёв» с использованием специально разработанных параллельных алгоритмов.
Abstract:
The question of investigating the convergence of the finite-difference scheme for one-way Helmholtz equation is considered. The main attention is paid to the evaluation of the speed of convergence of the numerical solutions in a uniform and standard norms for linear as well as nonlinear variant of the Helmholtz equation that takes into account the “self-influence” effect. The calculations were performed on a supercomputer “Sergey Korolev” using specially developed parallel algorithms.
Ключевые слова
:
коэффициент преломления, эффект «самовоздействия», фокусировка, конечно-разностная схема, погрешность аппроксимации, исследование сходимости, метод прогонки, параллельный алгоритм, суперкомпьютер.
Key words:
guidelines refractive index, “self-influence” effect, focusing, finite-difference scheme, accuracy of approximation, research of convergence, sweep method, parallel algorithm, supercomputer.
Литература:
- Gustafsson, B. Time compact difference methods for wave propagation in discontinuous media / B. Gustafsson, P. Wahlund // J. Sci. Comput. – 2004. – V. 26 – P. 272-293.
- Baruch, G. Fourth-order schemes for time-harmonic wave equations with discontinuous coefficients / G. Baruch, G. Fibich, S. Tsynkov, E. Turkel // Commun. Comput. Phys. – 2009. – V. 5 – P. 442-455.
- Feng, X. High order compact finite difference schemes for the Helmholtz Equation with discontinuous coefficients / X. Feng, Z. Li, Z. Qiao // Journal of Computation Mathematics. – 2011. – V. 29(3) – P. 324-340.
- Feng, X. A high-order compact scheme for the one-dimensional Helmholtz equation with a discontinuous coefficient / X. Feng // International Journal of Computer Mathematics. – 2012. – V. 1 – P. 1-7.
- Злотник, И.А. Семейство разностных схем с приближёнными прозрачными граничными условиями для обобщённого нестационарного уравнения Шрёдингера в полуполосе / И.А. Злотник // Журнал вычислительной математики и математической физики. - 2011. – Т. 51(3) – С. 384-406.
- Неганов, В.А. Линейная макроскопическая электродинамика. Т. 1. / В.А. Неганов, С.Б. Раевский, Г.П. Яровой. – М.: Радио и связь, 2000. – 509 с.
- Виноградова, М.Б. Теория волн / М.Б. Виноградова, О.В. Руденко, А.П. Сухоруков. – М.: Наука, 1979. – 385 c.
- Самарский, А.А. Численные методы математической физики / А.А. Самарский, А.В. Гулин. – М.: Научный мир, 2003. – 316 c.
- Борн, М. Основы оптики / М. Борн, Э. Вольф. – М.: Наука, 1973. – 720 с.
- Адамс, М. Введение в теорию оптических волноводов / М. Адамс. – М.: Мир, 1984. – 512 с.
- Ортега Джеймс, М. Введение в параллельные и векторные методы решения линейных систем / М. Ортега Джеймс. – М.: Мир, 1991. – 364 с.
- Головашкин, Д.Л. Параллельные алгоритмы решения сеточных уравнений трёхдиагонального вида, основанные на методе встречных прогонок / Д.Л. Головашкин // Математическое моделирование. – 2005. – Т. 17, № 11. – С. 118-128.
References:
- Gustafsson, B. Time compact difference methods for wave propagation in discontinuous media / B. Gustafsson, P. Wahlund // J. Sci. Comput. – 2004. – V. 26 – P. 272-293.
- Baruch, G. Fourth-order schemes for time-harmonic wave equations with discontinuous coefficients / G. Baruch, G. Fibich, S. Tsynkov, E. Turkel // Commun. Comput. Phys. – 2009. – V. 5 – P. 442-455.
- Feng, X. High order compact finite difference schemes for the Helmholtz Equation with discontinuous coefficients / X. Feng, Z. Li, Z. Qiao // Journal of Computation Mathematics. – 2011. – V. 29(3) – P. 324-340.
- Feng, X. A high-order compact scheme for the one-dimensional Helmholtz equation with a discontinuous coefficient / X. Feng // International Journal of Computer Mathematics. – 2012. – V. 1 – P. 1-7.
- Zlotnik, I. Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary Schrödinger equation in a semi-infinite strip / I. Zlotnik // Computational Mathematics and Mathematical Physics. – 2011. – V. 51(3) – P. 384-406. - (In Russian).
- Neganov, V.A. Linear macroscopic electro-dinamics / V.A. Neganov, S.B. Raevsky, G.P. Yarovoi. – Moscow: “Radio I svyas” Publisher, 2000. – V. 1. – 509 p. – (In Russian).
- Vinogradova, M.B. The theory of waves / M.B. Vinogradova, O.B. Rudenko, A.P. Sukhorukov. – Moskow: “Nauka” Publisher, 1979. – 358 p. – (In Russian).
- Samarsky, A.A. Numerical methods of mathematical physics / A.A. Samarsky, A.B. Gulin. – Moscow: “Nauchniy mir” Publisher, 2003. – 316 p. – (In Russian).
- Born, M Fundamentals of optics / M. Born, E. Wolf. – Moscow: “Nauka” Publisher, 1973. – 720 p. - (In Russian).
- Adams, M. Introduction to the theory of optical waveguides / M. Adams. – Moscow: “Mir” Publisher, 1984. – 512 p. – (In Russian).
- Ortega James, M. Introduction to parallel and vector solution of linear systems / M. Ortega James. – Moscow: “Mir” Publisher, 1991. – 364 p. – (In Russian).
- Golovashkin, D.L. Parallel algorithms for solving tridiagonal finite-difference equations based on method of counter-runs / D.L. Golovashkin // Mathematical modeling. – 2005. – V. 17, N 11. – P. 118-128. – (In Russian).
© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20