Тонкий коллиматор для светодиодов
Асланов Э.Р., Досколович Л.Л.

Аннотация:
Предложена конструкция коллиматора для светодиодов, обладающего малой толщиной. Коллиматор состоит из рефлектора и преломляющего оптического элемента, работающего по принципу полного внутреннего отражения. Представлен расчёт коллиматора с полной толщиной 5 мм и диаметром 30 мм. Согласно результатам моделирования, для ламбертовского источника с размером 1×1 мм2 коллиматор обеспечивает формирование пучка с расходимостью по полуспаду интенсивности менее 4 градусов при эффективности 84%. Проведён анализ рабочих характеристик коллиматора в зависимости от размеров источника и от ошибок позиционирования элементов коллиматора.

Abstract:
The design of a slim LED collimator is proposed. The collimator consists of a reflector and a refractive element which exploits the phenomenon of total internal reflection. The system with the thickness of 5 mm and the diameter of 30 mm was designed. The numerical simulations based on ray-tracing method demonstrate that the collimator provides the beam divergence less than 40 at half maximum of intensity with the efficiency more than 84% for Lambertian light source of 1x1 mm. The collimator performance versus light source size and error of collimator elements positioning is investigated.

Ключевые слова :
коллиматор, геометрическая оптика, светодиод, трассировка лучей.

Key words:
collimator, geometric optic, eikonal function, ray tracing.

Литература:

  1. Marshall, LED chip package with four LED chips and integrated optics for collimating and mixing the light/ US Patent Application US 2003/0076034 A1.
  2. Marshall, LED collimation optics with improved performance and reduced size/ US Patent US 6547423 B2.
  3. Rizkin, Portable luminaire/ US Patent US 7744246 B2.
  4. Munoz, F. Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes / F. Mu­noz, P. Benitez, O. Dross, J. Minano, B. Parkyn // Society of Photo-Optical Instrumentation Engineers, 2004.
  5. Benítez, P. Simultaneous multiple surface optical design method in three dimensions / P. Benítez, [et all] // Optical Engineering. – July 2004. – V. 43, Issue 7. – P. 1489-1502.
  6. Minano, J. Applications of the SMS method to design of compact optics / J. Minano, P. Benitez, L. Jiayao, J. Infante, J. Chaves, W. Lin // Proc. of SPIE. – 2010. – Vol. 7717. – P. 77170I.
  7. Elmer, W. A Study in Street Lighting Reflector Design/ William B. Elmer // Applied Optics. – 1966. – Vol. 5, Issue 2. – P. 343-343.
  8. Досколович, Л.Л. Расчёт формы поверхности зеркал для формирования изображения в виде линии / Л.Л. Досколович, C.И. Харитонов // Оптический журнал. – 2005. – Вып. 72, № 4. – С. 34-37.
  9. Born, M. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.) / M. Born, E. Wolf // Cambridge University Press, 1999.
  10. Zemax: Software for Optical Design. http://www.zemax.com
  11. Welford, W.T. High collection nonimaging optics / W.T. Welford, R. Winston // Academic Press, 1989.

References:

  1. Marshall, LED chip package with four LED chips and integrated optics for collimating and mixing the light/ US Patent Application US 2003/0076034 A1
  2. Marshall, LED collimation optics with improved performance and reduced size/ US Patent US 6547423 B2
  3. Rizkin, Portable luminaire/ US Patent US 7744246 B2
  4. Munoz, F. Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes / F. Munoz, P. Benitez, O. Dross, J. Minano, B. Parkyn // Society of Photo-Optical Instrumentation Engineers, 2004.
  5. Benítez, P. Simultaneous multiple surface optical design method in three dimensions / P. Benítez [et al] // Optical Engineering. – July 2004. – V. 43, Issue 7. – P. 1489-1502.
  6. Minano, J. Applications of the SMS method to design of compact optics / J. Minano, P. Benitez, L. Jiayao, J. Infante, J. Chaves, W. Lin // Proc. of SPIE. – 2010. – Vol. 7717. – P. 77170I.
  7. Elmer, W. A Study in Street Lighting Reflector Design / William B. Elmer // Applied Optics. – 1966. – Vol. 5, Issue 2. – P. 343-343.
  8. Doskolovich, L.L. Designing a mirror to form a line-shaped directivity diagram / L.L. Doskolovich, N.L. Kazanskiy, S.I. Haritonov // Journal of Modern Optics. – 2005. – Vol. 2. – P. 508-515. – (In Russian).
  9. Born, M. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.) / M. Born, E. Wolf // Cambridge University Press, 1999.
  10. Zemax: Software for Optical Design. http://www.zemax.com
  11. Welford, W.T. High collection nonimaging optics / W.T. Welford, R. Winston // Academic Press, 1989.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846 2) 332-56-22, факс: +7 (846 2) 332-56-20