Уменьшение размера фокального пятна при радиальной поляризации с помощью бинарного кольцевого элемента
Хонина С.Н., Устинов А.В.

Аннотация:
В работе аналитически и численно исследуется влияние ширины кольцевой диафрагмы с внесённым радиальным фазовым скачком на размеры и величину интенсивности фокального пятна в случае радиальной поляризации. Показано, что за счёт деструктивной интерференции, создаваемой кольцами с различной фазой, можно преодолеть скалярный предел, соответствующий первому нулю функции Бесселя нулевого порядка. При этом минимальный размер фокального пятна (FWHM = 0,33l) достигается при ширине кольцевой диафрагмы, составляющей 20 % от радиуса полной апертуры. В этом случае интенсивность боковых лепестков не превышает 30 % от центрального пика. Также показано, что за счёт внесения фазового скачка и одновременного уширения кольцевой апертуры можно сформировать фокальное пятно, размер которого не превышает предел, соответствующий узкой кольцевой апертуре, а интенсивность увеличивается почти в 6 раз. Боковые лепестки при этом составляют 35 % от центрального пика.

Ключевые слова :
острая фокусировка, радиальная поляризация, узкая кольцевая апертура, радиальный фазовый скачок, уменьшение фокального пятна, уровень боковых лепестков.

Литература:

  1. Quabis, S. Focusing light to a tighter spot / S. Quabis // Opt. Commun. - 2000. - V. 179. - P. 1-7.
  2. Dorn, R. Sharper focus for a radially polarized light beam / R. Dorn // Phys. Rev. Lett. - 2003. - V. 91. - P. 233901.
  3. Sheppard, C.J.R. Annular pupils, radial polarization, and superresolution / C.J.R. Sheppard // Appl. Opt. - 2004. - V. 43(22). - P. 4322-4327.
  4. Helseth, L.E. Mesoscopic orbitals in strongly focused light / L.E. Helseth // Opt. Commun. - 2003. - V. 224. - P. 255-261.
  5. Kozawa, Y. Sharper focal spot formed by higher-order radially polarized laser beams / Y. Kozawa and S. Sato // J. Opt. Soc. Am. A. - 2007. - V. 24. - P. 1793-1798.
  6. Sun, C.-C. Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation / C.-C. Sun and C.-K. Liu // Opt. Lett. - 2003. - V. 28. - P. 99-101.
  7. Wang, H. Creation of a needle of longitudinally polarized light in vacuum using binary optics / H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard and C.T. Chong // Nat. Photonics. - 2008. - V. 2. - P. 501-505.
  8. Хонина, С.Н. Управление вкладом компонент векторного электрического поля в фокусе высокоапертурной линзы с помощью бинарных фазовых структур / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. - 2010. - Т. 34, № 1. - С. 58-68.
  9. Хонина, С.Н. Анализ влияния волновых аберраций на уменьшение размеров фокального пятна в высокоапертурных фокусирующих системах / С.Н. Хонина, А.В. Устинов, Е.А. Пелевина // Компьютерная оптика. - 2011. - Т. 35, № 2. - С. 203-219.
  10. Toraldo di Francia, G. Degrees of freedom of an image / G. Toraldo di Francia // J. Opt. Soc. Am. –1969. - V. 59. - P. 799–804.
  11. Huang, F.M. Super-resolution without evanescent waves / F.M. Huang and N.I. Zheludev // Nano Lett. - 2009. - Vol. 9. - P. 1249-1254.
  12. Sales, T.R.M. Diffractive superresolution elements / T.R.M. Sales and G.M. Morris // J. Opt. Soc. Am. A. - 1997. - Vol. 14. - P. 1637.
  13. Хонина, С.Н. Минимизация светового и теневого фокального пятна с контролируемым ростом боковых лепестков в фокусирующих системах с высокой числовой апертурой / С.Н. Хонина, С.Г. Волотовский // Компьютерная оптика. - 2011. - Т. 35, № 4. - С. 438-451.
  14. Bewersdorf, J. 4pi-confocal microscopy is coming of age / Joerg Bewersdorf, Alexander Egner, Stefan W. Hell // G.I.T. Imaging & Microscopy. - 2004. - Vol. 4. - P. 24-25.
  15. Helseth, L.E. Breaking the diffraction limit in nonlinear materials / L.E. Helseth // Opt. Commun. - 2005. - Vol. 256. - P. 435.
  16. Bokor, N. Tight parabolic dark spot with high numerical aperture focusing with a circular p phase plate / N. Bokor, N. Davidson // Opt. Commun. - 2007. - V. 270. - P. 145-150.
  17. Chen, W. Three-dimensional focus shaping with cylindrical vector beams / W. Chen, Q. Zhan // Opt. Commun. - 2006. - V. 265. - P. 411-417.
  18. Gaoa, X. Focusing properties of concentric piecewise cylindrical vector beam / X. Gaoa, J. Wanga, H. Gua, W. Xub // Optik. - 2007. - V. 118. - P. 257-265.
  19. Huang, K. Design of DOE for generating a needle of a strong longitudinally polarized ?eld / K. Huang, P. Shi, X.-L. Kang, X. Zhang and Y.-P. Li // Opt. Lett. - 2010. - V. 35. - P. 965-967.
  20. Tian, B. Tight focusing of a double-ring-shaped azimuthally polarized beam / B. Tian, J. Pu // Opt. Lett. - 2011. - V. 36, N 11. - P. 2014-2016.
  21. Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image ?eld in an aplanatic system / B. Richards and E. Wolf // Proc. R. Soc. London Ser. A. - 1959. - V. 253. - P. 358-379.
  22. Abramowitz, M. Handbook of Mathematical  Functions  / M. Abramowitz and I.A. Stegun - Courier Dover Publica-tions, 1972. - 1046 p.
  23. Хонина, С.Н. Распространение радиально-ограничен­ных вихревых пучков в ближней зоне: I. Алгоритмы расчёта / С.Н. Хонина, А.В. Устинов, А.А. Ковалёв, С.Г. Волотовский // Компьютерная оптика. - 2010. - Т. 34, № 3. - С. 317-332.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846) 332-56-20