(41-4) 12 * << * >> * Русский * English * Содержание * Все выпуски
  
Aerial  vehicles detection and recognition for UAV vision system
    Muraviev V.S., Smirnov  S.A., Strotov V.V.
  Ryazan  State Radio  Engineering University,  Ryazan, Russia
  PDF 656 kB
DOI: 10.18287/2412-6179-2017-41-4-545-551
Страницы: 545-551.
Abstract:
  This article focuses on  aerial vehicle detection and recognition by a wide field of view monocular  vision system that can be installed on UAVs (unmanned aerial vehicles). The  objects are mostly observed on the background of clouds under regular daylight  conditions. The main idea is to create a multi-step approach based on a preliminary  detection, regions of interest (ROI) selection, contour segmentation, object  matching and localization. The described algorithm is able to detect small  targets, but unlike many other approaches is designed to work with large-scale  objects as well. The suggested algorithm is also intended to recognize and  track the aerial vehicles of specific kind using a set of reference objects  defined by their 3D models. For that purpose a computationally efficient  contour descriptor for the models and the test objects is calculated. An experimental  research on real video sequences is performed. The video database contains  different types of aerial vehicles: airplanes, helicopters, and UAVs. The  proposed approach shows good accuracy in all case studies and can be implemented  in onboard vision systems.
Keywords:
  aerial vehicles, object  detection, contour descriptor, recognition.
Citation: 
  Muraviev  VS, Smirnov SA, Strotov VV. Aerial  vehicles detection and recognition for UAV vision systems. Computer Optics  2017; 41(4): 545-551. DOI: 10.18287/2412-6179-2017-41-4-545-551.
References:
  - Tirri AE, Fasano G, Accardo D,  Moccia A, De Leis E. Advanced Sensing Issues for UAS Collision Avoidance //  Proceedings of the 2nd International Conference on Application and Theory of  Automation in Command and Control Systems 2012; 12-19.
 
  - Lai JS, Mejias L, Ford JJ. Airborne  vision?based collision?detection system. Journal of Field Robotics 2010; 28(2): 137-157. DOI:  10.1002/rob.20359.
 
  - Nussberger A, Grabner H, Gool LV.  Aerial object tracking from an airborne platform. International Conference on  Unmanned Aircraft Systems (ICUAS) 2014; 1284-1293.
 
  - Kovács L, Benedek C. Visual  real-time detection, recognition and tracking of ground and airborne targets.  Proc SPIE 2011: 7873: 787311. DOI: 10.1117/12.872314.
 
  - Kovács L, Kovács A, Utasi Á, Szirányi T. Flying target  detection and recognition by feature fusion. Optical Engineering 2012; 51(11):  117002. DOI: 10.1117/1.OE.51.11.117002.
 
  - Alpatov B, Korepanov S, Strotov V. A  composite algorithm for variable size object tracking for high performance  FPGA-based on-board vision systems. Proc SPIE 2014; 9247: 92470A. DOI:  10.1117/12.2064058.
 
  - Shotton J, Blake A, Cipolla R.  Multi-scale categorical object recognition using contour fragments. IEEE Transactions  on Pattern Analysis and Machine Intelligence 2008; 30(7): 1270-1281. DOI:  10.1109/TPAMI.2007.70772.
 
  - Shen W, et al. Deepcontour: A deep  convolutional feature learned by positive-sharing loss for contour detection.  IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015;  3982-3991. DOI: 10.1109/CVPR.2015.7299024.
 
  - Chan TF, Vese LA. Active contours without edges.  IEEE Transactions on Image Processing 2001; 10(2): 266-277. DOI:  10.1109/83.902291.
 
  - Wang XF, Huang DS, Xu H. An  efficient local ChanVese model for image segmentation. Pattern Recognition  2010; 43(3): 603-618. DOI: 10.1016/j.patcog.2009.08.002.
 
  - Arkin EM, Chew LP, Huttenlocher DP,  Kedem K, Mitchell JS. An efficiently computable metric for comparing polygonal  shapes IEEE Transactions on Pattern Analysis and Machine Intelligence 1991;  13(3): 209-216. DOI: 10.1109/34.75509.
 
  - Alpatov BA, Babayan PV, Ershov MD,  Strotov VV. The implementation of contour-based object orientation estimation  algorithm in FPGA-based on-board vision system. Proc SPIE 2016; 10007: 100070A.  DOI: 10.1117/12.2241091.
 
  - Petridis S, Geyer C, Singh S.  Learning to detect aircraft at low resolutions. Proceedings of the 6th  International Conference Computer Vision Systems (ICVS 2008); 474-483.
 
  - Dey D, Geyer CM, Singh S, Digioia M.  A cascaded method to detect aircraft in video imagery. The International  Journal of Robotics Research 2011; 30(12): 1527-1540.
 
  - Kovacs L, Benedek C. Visual  real-time detection, recognition and tracking of ground and airborne targets.  Proc SPIE 2011; 7873: 787311. DOI: 10.1117/12.872314.
 
  - Rong HJ, Jia YX, Zhao GS. Aircraft  recognition using modular extreme learning machine. Neurocomputing 2014; 128:  166-174. DOI: 10.1016/j.neucom.2012.12.064.
 
  - Li X-D, Pan J-D, Dezert J. Automatic  aircraft recognition using DSmT and HMM. 17th International Conference on  Information Fusion 2014.
 
  -  Karine A, Toumi A, Khenchaf A, El Hassouni M.  Aircraft recognition using a statistical model and sparse representation  //Proceedings of the International Conference on Big Data and Advanced Wireless  Technologies 2016; 49. DOI: 10.1145/3010089.3010134.
 
  
  © 2009, IPSI RAS
  Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru ; тел: +7  (846)  242-41-24 (ответственный
секретарь), +7 (846)
332-56-22 (технический  редактор), факс: +7 (846) 332-56-20
Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20