(41-4) 17 * << * >> * Русский * English * Содержание * Все выпуски
  
Three-dimensional model  of quantum dots' self-assembly under the action of laser radiation
  Tkachenko V.A., Tsipotan A.S., Aleksandrovsky A.S.,  Slabko V.V.
  Siberian  Federal University, Krasnoyarsk, Russia,
  Kirensky  Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, Russia 
  PDF 96 kB
DOI: 10.18287/2412-6179-2017-41-4-577-580
Страницы: 577-580.
Abstract:
This study considered a  process of quantum dots' self-assembly into nanostructure arrays with  predefined geometry, which proceeds in the external resonant laser field. We  considered the simplest case of assembling a stable structure of two particles.  The problem was solved numerically using a three-dimensional model of Brownian  dynamics. The idea of the method is that the attraction of the dots occurs due  to the interaction of resonantly induced dipole moments, with the dots being  then captured by the Van der Waals force. Finally, a three-dimensional model  was considered; the average nanoparticle aggregation time as a function of the  laser radiation wavelength was calculated; the probability of such structures'  being formed was estimated for the calculated average aggregation time and for  the laser pulse duration used in the experiment. The wavelength of the maximum  probability was found to be shifted from the single particle resonance  wavelength of 525 nm to the red area of 535 nm, which is in qualitative agreement  with the redshift of the resonance wavelength of interacting particles.
Keywords:
  Nanostructure  fabrication; plasmonics; optical tweezers or optical manipulation.
Citation: 
  Tkachenko VA, Tsipotan AS, Aleksandrovsky AS,  Slabko VV.Three-dimensional model of  quantum dots' self-assembly under the action of laser radiation. Computer  Optics 2017; 41(4): 577-580. DOI: 10.18287/2412-6179-2017-41-4-577-580.
References:
  - Yang  Y, Zheng Y, Cao W,  Titov A, Hyvonen J, Manders JR, Xue J, Holloway PH, Qian L. High-efficiency  light-emitting devices based on quantum dots with tailored nanostructures. Nature  Photonics 2014; 9: 259-266.  DOI: 10.1038/nphoton.2015.36.
 
  - Volkov Y. Quantum dots in  nanomedicine: Recent trends, advances and unresolved issues. Biochemical and Biophysical  Research Communications 2015; 468(3): 419-427. DOI: 10.1016/j.bbrc.2015.07.039.
 
  - Zhang J, Cheng F, Li J, Zhu J, Lu Y.  Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances  and future perspectives. Nanotoday 2016; 11(3): 309-329. DOI: 10.1016/j.nantod.2016.05.010.
 
  - Frecker T, Bailey D, Arzeta-Ferrer  X, McBride J, Rosenthal SJ. Review – Quantum dots and their application in  lighting, displays, and biology. ESC Journal of Solid State  Science and Technology 2016; 5(1): R3019-R3031. DOI: 10.1149/2.0031601jss.
 
  - Tikhomirov G, Hoogland S, Lee PE,  Fischer A, Sargent EH, Kelley SO. DNA-based programming of quantum dot valency,  self-assembly and luminescence. Nature Nanotechnology 2011; 6; 485-490. DOI:  10.1038/nnano.2011.100.
 
  - Wang T, LaMontagne D, Lynch J,  Zhuangc J, Cao YC. Colloidal  superparticles from nanoparticle assembly. Chem Soc Rev 2013; 42(7): 2804-2823.  DOI: 10.1039/c2cs35318k.
 
  - Slabko VV, Khachatryan GG,  Aleksandrovsky AS. Self-organized aggregation of small metal particles controlled  by an external light field. JETP Letters 2006; 84(6): 300-304. DOI:  10.1134/S0021364006180056.
 
  - Slabko VV, Tsipotan AS,  Aleksandrovsky AS. Resonant light-controlled self-assembly of ordered  nanostructures. Photonics and Nanostructures – Fundamentals and Applications  2012; 10(4): 636-643. DOI: 10.1016/j.photonics.2012.06.002.
 
  - Slabko VV, Tsipotan AS,  Aleksandrovsky AS. Self-organised aggregation of a pair of particles with  different resonant frequencies and electric dipole moments of transitions,  controlled by an external quasi-resonant field. Quantum Electronics 2013; 43(5):  458-462. DOI: 10.1070/QE2013v043n05ABEH015021.
 
  - Tsipotan AS, Gerasimova MA, Slabko  VV, Aleksandrovsky AS. Laser-induced wavelength-controlled self-assembly of  colloidal quasi-resonant quantum dots. Optics Express 2016; 24(10):  11145-11150. DOI: 10.1364/OE.24.011145.
 
  - Wang C-L, Fang M, Han J-S, Zhang H,  Cui Y-P, Yang B. Two opposite effects of alcohols in the precipitation of aqueous nanocrystals. The Journal of Physical Chemistry C 2009; 113(45):  19445-19451. DOI: 10.1021/jp905407y. 
 
  - Xu J, Xu S, Lv C, Wang C, Cui Y.  Excellent dynamic stability under saturated salt solution for aqueous quantum  dots capped by multi-branched ligands. Materials Research Express 2016; 3(9): 095903.  DOI: 10.1088/2053-1591/3/9/095903.
 
  - Zhang H, Liu Y, Zhang J, Wang C, Li  M, Yang B. Influence of interparticle electrostatic repulsion in the initial  stage of aqueous semiconductor nanocrystal growth. The Journal of Physical  Chemistry C 2008; 112(6): 1885-1889. DOI: 10.1021/jp710110n.
 
  - 
    Slabko VV, Tsipotan AS, Aleksandrovsky   AS, Slyusareva EA. Dynamics of  self-organized aggregation of resonant nanoparticles in a laser field. Applied  Physics B 2014; 117(1): 271-278. DOI: 10.1007/s00340-014-5831-0.
 
  
  © 2009, IPSI RAS
  Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru ; тел: +7  (846)  242-41-24 (ответственный
секретарь), +7 (846)
332-56-22 (технический  редактор), факс: +7 (846) 332-56-20
Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20