(43-6) 07 * << * >> * Русский * English * Содержание * Все выпуски

Properties of nematic LC planar and smoothly-irregular waveguide structures: research in the experiment and using computer modeling

A.A. Egorov1, L.A. Sevastyanov2,3, V.D. Shigorin1, A.S. Ayriyan3,4, E.A. Ayriyan3

A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia,
Peoples' Friendship University of Russia (RUDN University), Moscow, Russia,
Joint Institute for Nuclear Research, Dubna, Moscow region, Russia,
A.I. Alikhanyan National Science Laboratory, Yerevan, Armenia

 PDF, 993 kB

DOI: 10.18287/2412-6179-2019-43-6-976-982

Страницы: 976-982.

Язык статьи: английский.

Аннотация:
Nematic liquid crystal planar and smoothly-irregular waveguide structures were studied experimentally and by the computer modeling. Two types of optical smoothly-irregular waveguide structures promising for application in telecommunications and control systems are studied by numerical simulation: liquid crystal waveguides and thin film solid generalized waveguide Luneburg lens. Study of the behavior of these waveguide structures where liquid crystal layer can be used to control the properties of the entire device, of course, promising, especially since such devices are also able to perform various sensory functions when changing some external parameters, accompanied by a change in a number of their properties. It can be of interest to researchers not only in the field of the integrated optics but also in some others areas: nano-photonics, optofluidics, telecommunications, and control systems. The dependences of the attenuation coefficient (optical losses) of waveguide modes and the effective sizes (correlation radii) of quasi-stationary irregularities of the liquid-crystal layers on the linear laser radiation polarization and on the presence of pulse-periodic electric field were experimentally observed. An estimate was made of the correlation radii of liquid-crystal waveguide quasi-stationary irregularities. The obtained results are undoubtedly important for further research of waveguide liquid crystal layers, both from the theoretical point of view, and practical – in the organization and carrying out new experimental researches, for example, when developing promising integrated-optical LC sensors.

Ключевые слова:
waveguide, planar lens, smoothly-irregular, liquid crystal, laser, director, irregularities, optofluidics, sensor, numerical simulation.

Цитирование:
Egorov, A.A. Properties of nematic LC planar and smoothly-irregular waveguide structures: research in the experiment and using computer modeling / A.A. Egorov, L.A. Sevastyanov, V.D. Shigorin, A.A. Ayriyan, E.A. Ayriyan // Computer Optics. – 2019. – Vol. 43(6). – P. 976-982. – DOI: 10.18287/2412-6179-2019-43-6-976-982.

Благодарности:
The publication has been prepared with the support of the “RUDN University Program 5-100” (Sevastyanov L.A.) and funded by RFBR according to the research projects No. 18-07-00567, No. 18-51-18005 and No. 19-01-00645
We are grateful to: I.A. Maslyanitsyn (for his help in carrying out the experiment), I. Marinov and L. Popova (for preparing samples). We also thank G. Andler for participating in a fruitful discussion.

References:

  1. Blinov LM. Electro- and magnetooptics of liquid crystals [In Russian]. Moscow: Nauka; 1978.
  2. Khoo IC. Liquid crystals. 2nd ed. Wiley; 2007. ISBN: 978-0-471-75153-3.
  3. Egorov A, Sevastianov L, Shigorin V, Andler G, Ayriyan A, Ayriyan E. Experimental and numerical study of properties of nematic liquid crystal waveguide structures. ICUMT 2018: 448-452. DOI: 10.1109/ICUMT.2018.8631282.
  4. Egorov AA, Shigorin VD, Ayriyan AS, Ayryan EA. Study of the effect of pulsed-periodic electric field and linearly polarized laser radiation on the properties of liquid-crystal waveguide. Physics of Wave Phenomena 2018; 26(2): 116-123. DOI: 10.3103/S1541308X18020012.
  5. Egorov AA, Andler G, Sevastyanov AL, Sevastyanov LA. On some properties of smoothly irregular waveguide structures critical for information optical systems. Communications in Computer and Information Science 2018; 919: 387-398. DOI: 10.1007/978-3-319-99447-5.
  6. Ayriyan AS, Ayrjan EA, Egorov AA, Maslyanitsyn IA, Shigorin VD. Numerical modeling of the static electric field effect on the director of the nematic liquid crystal director. Mathematical Models and Computer Simulations 2018; 10(6): 714-720. DOI: 10.1134/S2070048218060029.
  7. Ayriyan AA, Ayrjan EA, Egorov AA, Hadjichristov GB, Marinov YG, Maslyanitsyn IA, Petrov AG, Pribis J, Popova L, Shigorin VD, Strigazzi A, Torgova SI. Some features of second harmonic generation in the nematic liquid crystal 5CB in the pulsed-periodic electric field. Physics of Wave Phenomena 2016; 24(4): 259-267. DOI: 10.3103/S1541308X16040026.
  8. Ayriyan AA, Ayrjan EA, Egorov AA, Dencheva-Zarkova M, Hadjichristov GB, Marinov YG, Maslyanitsyn IA, Petrov AG, Popova L, Shigorin VD, Strigazzi A, Torgova SI. Modeling of static electric field effect on nematic liquid crystal director orientation in side-electrode cell. European Physical Journal WoC 2018; 173: 03002. DOI: 10.1051/epjconf/201817303002.
  9. Beeckman J, Yang T-H, Nys I, George JP, Lin T-H, Neyts K. Multi-electrode tunable liquid crystal lenses with one lithography step. Opt Lett 2018; 43(2): 271-274. DOI: 10.1364/OL.43.000271.
  10. Gilardi G, Asquini R, d’Alessandro A, Assanto G. Widely tunable electro-optic distributed Bragg reflector in liquid crystal waveguide. Opt Express 2010; 18(11): 11524-11529. DOI: 10.1364/OE.18.011524.
  11. Wang T-J, Yang S-C, Chen T-J, Chen B-Y. Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal. Opt Express 2012; 20(14): 15853-15858. DOI: 10.1364/OE.20.015853.
  12. Liu J-M. Photonic devices. Cambridge: Cambridge University Press; 2005. ISBN: 978-0-521-55195-3.
  13. Rigneault H, Lourtioz J-M, Delalande C, Levenson A, eds. Nanophotonics. ISTE Ltd; 2006. ISBN: 978-1-905209-28-6.
  14. Hunsperger RG. Integrated optics. Theory and technology. New York: Springer-Verlag; 1984.
  15. Marcuse D. Light transmission optics. Van Nostrand Reinhold; 1972.
  16. Snyder AV, Love JD. Optical waveguide theory. Springer Science & Business Media; 2012. ISBN: 978-0-412-09950-2.
  17. Egorov AA. Correct investigation of the statistic irregularities of integrated optical waveguides with the use of the waveguide light scattering. Las Phys Letters 2004; 1(8): 421-428. DOI: 10.1002/lapl.200310094.
  18. Egorov AA. Theory of laser radiation scattering in integrated optical waveguide with 3D-irregularities in presence of noise: vector consideration. Las Phys Letters 2004; 1(12): 579-585. DOI: 10.1002/lapl.200410140.
  19. Egorov AA, Sevastyanov LA. Mode structure of smoothly irregular integrated optical four-layer three-dimensional waveguide. Quant Electron 2009; 39(6): 566-574. DOI: 10.1070/QE2009v039n06ABEH013966.
  20. Egorov AA, Lovetskiy KP, Sevastyanov AL, Sevastianov LA. Modelling of guided modes (eigenmodes) and synthesis of thin film generalized waveguide Luneburg lens in the zero-order vector approximation. Quant Electron 2010; 40(9): 830-836. DOI: 10.1070/QE2010v040n09ABEH014332.
  21. Egorov AA. Theoretical, experimental and numerical methods for investigating the characteristics of laser radiation scattered in the integrated-optical waveguide with three-dimensional irregularities. Quantum Electronics 2011; 41(7): 644-649. DOI: 10.1070/QE2011v041n07ABEH014560.
  22. Egorov AA. Study of bifurcation processes in a multimode waveguide with statistical irregularities. Quantum Electronics 2011; 41(10): 911-916. DOI: 10.1070/QE2011v041n10ABEH014683.
  23. Egorov AA. Theoretical and numerical analysis of propagation and scattering of eigen- and non-eigenmodes of an irregular integrated-optical waveguide. Quantum Electronics 2012; 42(4): 337-344. DOI: 10.1070/QE2012v042n04ABEH014809.
  24. Egorov AA. Numerical investigation of characteristics of laser radiation scattered in an integrated optical waveguide with three-dimensional inhomogeneities. Optics and Spectroscopy 2012; 112(2): 280-290. DOI: 10.1134/S0030400X12020105.
  25. Sevastyanov LA, Egorov AA, Sevastyanov AL. Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures. Physics of Atomic Nuclei 2013; 76(2): 224-239. DOI: 10.1134/S1063778813010134.
  26. Egorov AA, Sevast'yanov LA, Sevast'yanov AL. Method of adiabatic modes in research of smoothly irregular integrated optical waveguides: zero approximation. Quantum Electronics 2014; 44(2): 167173. DOI: 10.1070/QE2014v044n02ABEH015303.
  27. Egorov AA, Lovetskiy KP, Sevastyanov AL, Sevastyanov LA. Integrated optics: Theory and computer modelling [in Russian]. A monograph. Izdatel’stvo RUDN; 2015. ISBN: 978-5-209-06615-6.
  28. Born M, Wolf E. Principles of optics. Pergamon Press; 1986. ISBN: 0-08-026482-4.
  29. Goodman JW. Introduction to Fourier optics. McGraw-Hill; 1996. ISBN: 0-07-024254-2.
  30. Yong M. Optics and lasers: Including fibers and optical waveguides. Springer; 2001. ISBN: 978-3-540-65741-5.
  31. Ayriyan AA, Ayryan EA, Dencheva-Zarkova M, Egorov AA, Hadjichristov GB, Marinov YG, Maslyanitsyn IA, Petrov AG, Popova L, Shigorin VD, Torgova SI. Simulation of the static electric field effect on the director orientation of nematic liquid crystal in the transition state. Physics of Wave Phenomena 2019; 27(1): 67-72. DOI: 10.3103/S1541308X19010114.
  32. Egorov AA, Egorov MA, Stavtsev AV, Timakin AG, Chekhlova TK. A fast integrated optical sensor of gaseous substances. Journal of Russian Laser Research 2010; 31(1): 12-21. DOI: 10.1007/s10946-010-9120-z.
  33. Zografopoulos DC, Beccherelli R. Long-range plasmonic directional coupler switches controlled by nematic liquid crystals. Opt Express 2013; 21(7): 8240-8250. DOI: 10.1364/OE.21.008240.
  34. Wang Y, Li H, Zhao L, Liu Y, Liu S, Yang J. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application. Opt Express 2017; 25(2): 918-926. DOI: 10.1364/OE.25.000918.
  35. Morgan SP. General solution of the Luneberg lens problem. J Appl Phys 1958; 29(9): 1358-1368. DOI: 10.1063/1.1723441.
  36. Southwell WH. Index profiles for generalized Luneburg lenses and their use in planar optical waveguides. J Opt Soc A 1977; 67(8): 1010-1014.
  37. Colombini E. Design of thin-film Luneburg lenses for maximum focal length control. Appl Opt 1981; 20(20): 3589-3593. DOI: 10.1364/AO.20.003589.
  38. Falco ADi, Kehr SC, Leonhardt U. Luneburg lens in silicon photonics. Opt Express 2011; 19(6): 5156-5162. DOI: 10.1364/OE.19.005156.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20