(44-3) 01 * << * >> * Русский * English * Содержание * Все выпуски

Достижения в разработке плазмонных волноводных датчиков для измерения показателя преломления
Н.Л. Казанский 1,2, M.A. Бутт 2, С.А. Дегтярев 1,2, С.Н. Хонина 1,2

ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,

443001, Россия, Самарская область, г. Самара, ул. Молодогвардейская, д. 151,

Самарский национальный исследовательский университет имени академика С.П. Королёва,

443086, Россия, Самарская область, г. Самара, Московское шоссе, д. 34

 PDF, 4437 kB

DOI: 10.18287/2412-6179-CO-743

Страницы: 295-318.

Аннотация:
Оптические датчики широко используются в биомедицинской, химической и пищевой промышленности и обеспечивают высокую чувствительность к изменениям показателя преломления в окружающей среде благодаря специфическому распределению электромагнитного поля собственных мод (резонансных состояний). Чувствительность датчика сильно зависит от его материала и структуры. В этом обзоре мы сосредоточились на анализе кремниевых волноводов как перспективном компоненте миниатюризации оптических датчиков и плазмонных датчиках показателя преломления без флуоресцентной маркировки. Представлены новейшие разработки специальных типов плазмонных структур, таких как волноводы металл–изолятор–металл, и их применение в датчиках показателя преломления. Анализируются многочисленные типы плазмонных волноводов, их геометрические структуры, материалы и процессы изготовления, а также возможные энергетические потери. Важной частью обзора является обсуждение спектральных характеристик недавно предложенных датчиков показателя преломления с акцентом на их чувствительность и показатели качества.

Ключевые слова:
плазмонные волноводы, структуры металл–диэлектрик–металл, резонансы Лоренца и Фано, датчики показателя преломления.

Благодарности:
Обзор подготовлен в рамках выполнения гранта РФФИ № 19-17-50131-Экспансия и государственного задания ФНИЦ «Кристаллография и фотоника» РАН (соглашение № 007-ГЗ/Ч3363/26).

Цитирование:
Казанский, Н.Л. Достижения в разработке плазмонных волноводных датчиков для измерения показателя преломления / Н.Л. Казанский, M.A. Бутт, С.А. Дегтярев, С.Н. Хонина // Компьютерная оптика. – 2020. – Т. 44, № 3. – С. 295-318. – DOI: 10.18287/2412-6179-CO-743.

Литература:

  1. Reed, G.T. Silicon photonics: The state of the art / G.T. Reed, A.P. Knights. – Wiley-Interscience, 2008. – 354 p. – ISBN: 978-0-470-02579-6.
  2. Alferov, Zh.I. The semiconductor revolution in the 20th century / Zh.I. Alferov // Russian Chemical Reviews. – 2013. – Vol. 82, Issue 7. – P. 587-596. – DOI: 10.1070/RC2013v082n07ABEH004403.
  3. Butt, M.A. An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength / M.A. Butt, S.A. Degtyarev, S.N. Khonina, N.L. Kazanskiy // Journal of Modern Optics. – 2017. – Vol. 64, Issue 18. – P. 1892-1897. – DOI: 10.1080/09500340.2017.1325947.
  4. Homola, J. Surface plasmon resonance biosensors / J. Homola, S. Yee, D. Myszka. – In: Optical biosensors: Present and future /ed. by F.S. Ligler, Ch. Taitt. – Chap. 7. – Amsterdam: Elsevier, 2002. – P. 207-251. – DOI: 10.1016/B978-044450974-1/50007-0.
  5. Butt, M.A. Optical elements based on silicon photonics / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Computer Optics. – 2019. – Vol. 43, Issue 6. – P. 1079-1083. – DOI: 10.18287/2412-6179-2019- 43-6-1079-1083.
  6. Dong, P. Low loss shallow-ridge silicon waveguides / P. Dong, [et al.] // Optics Express. – 2010. – Vol. 18, Issue 14. – P. 14474-14479. – DOI: 10.1364/OE.18.014474.
  7. Penades, J.S. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding / J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J.G. Wangüemert-Pérez, R. Halir, A.Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Che­ben, G.Z. Mashanovich // Optics Express. – 2016. – Vol. 24, Issue 20. – P. 22908-22916. – DOI: 10.1364/OE.24.022908.
  8. Rickman, A.G. Silicon-on-insulator optical rib waveguide loss and mode characteristics / A.G. Rickman, G.T. Reed, F. Namavar // Journal of Lightwave Technology. – 1994. – Vol. 12, Issue 10. – P. 1771-1776. – DOI: 10.1109/50.337489.
  9. Degtyarev, S.A. 3D-simulation of silicon micro-ring resonator with Comsol / S.A. Degtyarev, V.V. Podlipnov, P. Verma, S.N. Khonina // Proceedings of SPIE. – 2016. – Vol. 10224. – 102241L. – DOI: 10.1117/12.2266783.
  10. Kazanskiy, N.L. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review / N.L. Kazanskiy, S.N. Khonina, M.A. Butt // Physica E: Low-dimensional Systems and Nanostructures. – 2020. – Vol. 117. – 113798. – DOI: 10.1016/j.physe.2019.113798.
  11. Butt, M.A. Conditions of a single-mode rib channel waveguide based on dielectric TiO2/SiO2 / M.A. Butt, E.S. Kozlova, S.N. Khonina // Computer Optics. – 2017. – Vol. 41(4). – P. 494-498. – DOI: 10.18287/2412-6179-2017-41-4-494-498.
  12. Egorov, A.V. Using coupled photonic crystal cavities for increasing of sensor sensitivity / A.V. Egorov, N.L. Kazanskiy, P.G. Serafimovich // Computer Optics. – 2015. – Vol. 39(2). – P. 158-162. – DOI: 10.18287/0134-2452-2015-39-2-158-162.
  13. Butt, M.A. Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 µm wavelength for evanescent field gas absorption sensor / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Optik. – 2018. – Vol. 168. – P. 692-697. – DOI: 10.1016/j.ijleo.2018.04.134.
  14. Khonina, S.N. Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application / S.N. Khonina, N.L. Kazanskiy, M.A. Butt // IEEE Sensors Journal. – 2020. – Vol. 20. – DOI: 10.1109/JSEN.2020.2985840.
  15. Soref, R.A. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2 / R.A. Soref, J. Schmidtchen, K. Petermann // IEEE Journal of Quantum Electronics. – 1991. – Vol. 27, Issue 8. – P. 1971-1974. – DOI: 10.1109/3.83406.
  16. Almeida, V.R. Guiding and confining light in void nanostructure / V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson // Optics Letters. – 2004. – Vol. 29, Issue 11. – P. 1209-1211. – DOI: 10.1364/OL.29.001209.
  17. Wang, X. Silicon photonic slot waveguide Bragg gratings and resonators / X. Wang, S. Grist, J. Flueckiger, N.A.F. Jaeger, L. Chrostowski // Optics Express. – 2013. – Vol. 21, Issue 16. – P. 19029-19039. – DOI: 10.1364/OE.21.019029.
  18. Butt, M.A. Numerical analysis of a miniaturized design of a Fabry-Perot resonator based on silicon strip and slot waveguides for bio-sensing applications / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Journal of Modern Optics. – 2019. – Vol. 66, Issue 11. – P. 1172-1178. – DOI: 10.1080/09500340.2019.1609613.
  19. Butt, M.A. A serially cascaded micro-ring resonator for simultaneous detection of multiple analytes / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Laser Physics. – 2019. – Vol. 29, Issue 4. – 046208. – DOI: 10.1088/1555-6611/ab0371.
  20. Butt, M.A. Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Waves in Random and Complex Media. – 2020. – Vol. 30, Issue 2. – P. 292-299. – DOI: 10.1080/17455030.2018.1506191.
  21. Butt, M.A. Device performance of standard strip, slot and hybrid plasmonic μ-ring resonator: a comparative study / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Waves in Random and Complex Media. – 2020. – 10 p. – DOI: 10.1080/17455030.2020.1744769.
  22. He, X. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement / X. He, [et al.] // Optics Express. – 2018. – Vol. 26, Issue 8. – P. 10109-10118. – DOI: 10.1364/OE.26.010109.
  23. Zenin, V.A. Hybrid plasmonic waveguides formed by metal coating of dielectric ridges / V.A. Zenin, [et al.] // Optics Express. – 2017. – Vol. 25, Issue 11. – P. 12295-12302. – DOI: 10.1364/OE.25.012295.
  24. Butt, M.A. Enhancement of evanescent field ratio in a silicon strip waveguide by incorporating a thin metal film / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Laser Physics. – 2019. – Vol. 29, Issue 7. – 076202. – DOI: 10.1088/1555-6611/ab1414.
  25. Butt, M.A. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // IEEE Sensors Journal. – 2020. – Vol. 20, Issue 3. – P. 1355-1362. – DOI: 10.1109/JSEN.2019.2944391.
  26. Butt, M.A. Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Journal of Modern Optics. – 2019. – Vol. 66, Issue 9. – P. 1038-1043. – DOI: 10.1080/09500340.2019.1601272.
  27. Butt, M.A. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Optik. – 2020. – Vol. 202. – 163655. – DOI: 10.1016/j.ijleo.2019.163655.
  28. Kazanskiy, N.L. Enhancing the sensitivity of a standard plasmonic MIM square ring resonator by incorporating nanodots in the cavity / N.L. Kazanskiy, M.A. Butt // Photonics Letters of Poland. – 2020. – Vol. 12, Issue 1. – P. 1-3. – DOI: 10.4302/plp.v12i1.902.
  29. Butt, M.A. Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Journal of Modern Optics. – 2019. – Vol. 66, Issue 19. – P. 1920-1925. – DOI: 10.1080/09500340.2019.1683633.
  30. Gordon, R. Light in a subwavelength slit in a metal: propagation and reflection / R. Gordon // Physical Review B. – 2006. – Vol. 73, Issue 15. – 153405. – DOI: 10.1103/PhysRevB.73.153405.
  31. Dionne, J.A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization / J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman // Physical Review B. – 2006. – Vol. 73, Issue 3. – 035407. – DOI: 10.1103/PhysRevB.73.035407.
  32. Bozhevolnyi, S.I. Channel plasmon subwavelength waveguide components including interferometers and ring resonators / S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen // Nature. – 2006. – Vol. 440, Issue 7083. – P. 508-511. – DOI: 10.1038/nature04594.
  33. Economou, E.N. Surface plasmons in thin films / E.N. Economou // Physical Review. – 1969. – Vol. 182, Issue 2. – P. 539-554. – DOI: 10.1103/PhysRev.182.539.
  34. Nikolajsen, T. Surface plasmon polariton based modulators and switches operating at telecom wavelengths / T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi // Applied Physics Letters. – 2004. – Vol. 85, Issue 24. – P. 5833-5835. – DOI: 10.1063/1.1835997.
  35. Charbonneau, R. Passive integrated optics elements based on long-range surface plasmon polaritons / R. Charbonneau, C. Scales, I. Breukelaar, [et al.] // Journal of Lightwave Technology. – 2006. – Vol. 24, Issue 1. – P. 477-494. – DOI: 10.1109/JLT.2005.859856.
  36. Degtyarev, S.A. Singular laser beams nanofocusing with dielectric nanostructures: theoretical investigation / S.A. Degtyarev, A.P. Porfirev, A.V. Ustinov, S.N. Kho­nina // Journal of the Optical Society of America B. – 2016. – Vol. 33, Issue 12. – P. 2480-2485. – DOI: 10.1364/JOSAB.33.002480.
  37. Yang, R. Subwavelength plasmonic waveguides and plasmonic materials / R. Yang, Z. Lu // International Journal of Optics. – 2012. – Vol. 2012. – 258013. – DOI: 10.1155/2012/258013.
  38. Kamada, S. Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides / S. Kamada, T. Okamoto, S.E. El-Zohary, M. Haraguchi // Optics Express. – 2016. – Vol. 24, Issue 15. – P. 16224-16231. – DOI: 10.1364/OE.24.016224.
  39. Ditlbacher, H. Silver nanowires as surface plasmon resonators / H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn // Physical Review Letters. – 2005. – Vol. 95, Issue 25. – 257403. – DOI: 10.1103/PhysRevLett.95.257403.
  40. Kittel, C. Introduction to solid state physics / C. Kittel. –New York, NY: John Wiley & Sons, 1989. – ISBN: 978-0-471-41526-8.
  41. Lide, D.R. CRC handbook of chemistry and physics / D.R. Lide. – 85th ed. – Boca Raton: CRC Press, 2004. – 2656 p. – ISBN: 978-0-8493-0485-9.
  42. Ordal, M.A. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, W / M.A. Ordal, R.J. Bell, J. Alexander, L.L. Long, M.R. Querry // Applied Optics. – 1985. – Vol. 24, Issue 24. – P. 4493-4499. – DOI: 10.1364/ao.24.004493.
  43. Kazanskiy, N.L. Optical materials: Microstructuring surfaces with off-electrode plasma / N.L. Kazanskiy, V.A. Kolpakov. – Boca Raton, FL: CRC Press, 2017. – 212 p. – ISBN: 978-1-1381-9728-2.
  44. Masson, J.-F. Nanohole arrays in chemical analysis: Manufacturing methods and applications / J.-F. Masson, M.-P. Murray-Methot, L.S. Live // Analyst. – 2010. – Vol. 135, Issue 7. – P. 1483-1489. – DOI: 10.1039/C0AN00053A.
  45. Donnelly, V.M. Plasma etching: Yesterday, today, and tomorrow / V.M. Donnelly, A. Kornblit // Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. – 2013. – Vol. 31, Issue 5. – 050825. – DOI: 10.1116/1.4819316.
  46. Cao, J. Gold nanorod-based localized surface plasmon resonance biosensors: A review / J. Cao, T. Sun, K.T.V. Grattan // Sensors and Actuators B: Chemical. – 2014. – Vol. 195. – P. 332-351. – DOI: 10.1016/j.snb.2014.01.056.
  47. Dong, P. Low loss shallow-ridge silicon waveguides / P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A.V. Krishnamoorthy, M. Asghari // Optics Express. – 2010. – Vol. 18, Issue 14. – P. 14474-14479. – DOI: 10.1364/OE.18.014474.
  48. Butt, M.A. A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Laser Physics. – 2019. – Vol. 29, Issue 4. – 046207. – DOI: 10.1088/1555-6611/ab0372.
  49. Heck, M.J.R. Ultra-low loss waveguide platform and its integration with silicon photonics / M.J.R. Heck, J.F. Bauters, M.L. Davenport, D.T. Spencer, J.E. Bowers // Laser and Photonics Reviews. – 2014. – Vol. 8, Issue 5. – P. 667-686. – DOI: 10.1002/lpor.201300183.
  50. Butt, M.A. Compact design of a polarization beam splitter based on silicon-on-insulator platform / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Laser Physics. – 2018. – Vol. 28, Issue 11. – 116202. – DOI: 10.1088/1555-6611/aadf18.
  51. Tran, M.A. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics / M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, J.E. Bowers // Applies Sciences. – 2018. – Vol. 8, Issue 7. – 1139. – DOI: 10.3390/app8071139.
  52. Butt, M.A. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Journal of Modern Optics. – 2018. – Vol. 65, Issue 2. – P. 174-178. – DOI: 10.1080/09500340.2017.1382596.
  53. Butt, M.A. A compact design of a balanced 1×4 optical power splitter based on silicon on insulator slot waveguides / M.A. Butt, A.N.K. Reddy, S.N. Khonina // Computer Optics. – 2018. – Vol. 42(2). – P. 244-247. – DOI: 10.18287/2412-6179-2018-42-2-244-247.
  54. Butt, M.A. Hybrid plasmonic waveguide race-track µ-ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Laser Physics. – 2020. – Vol. 30, Issue 1. – 016202. – DOI: 10.1088/1555-6611/ab5719.
  55. Maier, S.A. Low-loss fibre accessible plasmon waveguide for planar energy guiding and sensing / S.A. Maier, P.E. Barclay, T.J. Johnson, M.D. Friedman, O. Painter // Applied Physics Letters. – 2004. – Vol. 84. – 3990. – DOI: 10.1063/1.1753060.
  56. Безус, Е.А. Подавление рассеяния в элементах плазмонной оптики с помощью двухслойной диэлектрической структуры / Е.А. Безус, Л.Л. Досколович, Н.Л. Казанский, В.А. Сойфер // Письма в ЖТФ. – 2011. – Т. 37, № 23. – С. 10-18.
  57. Bezus, E.A. Scattering suppression in plasmonic optics using a simple two-layer dielectric structure / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskiy // Applied Physics Letters. – 2011. – Vol. 98, Issue 22. – 221108. – DOI: 10.1063/1.3597620.
  58. Безус, Е.А. Плазмонный волновод диэлектрик–диэлектрик–металл для подавления паразитного рассеяния в элементах плазмонной оптики / Е.А. Безус, Л.Л. Досколович, Н.Л. Казанский // Известия РАН. Серия физическая. – 2011. – Т. 75, № 12. – С. 1674-1677.
  59. Maier, S.A. Experimental demonstration of fibre-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing / S.A. Maier, M.D. Friedman, P.E. Barclay, O. Painter // Applied Physics Letters. – 2005. – Vol. 86, Issue 7. – 071103. – DOI: 10.1063/1.1862340.
  60. Oulton, R.F. Confinement and propagation characteristics of subwavelength plasmonic modes / R.F. Oulton, G. Bartal, D.F.P. Pile, X. Zhang // New Journal of Physics. – 2008. – Vol. 10. – 105018. – DOI: 10.1088/1367-2630/10/10/105018.
  61. Thiel, A.J. In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces / A.J. Thiel, A.G. Frutos, C.E. Jordan, R.M. Corn, L.M. Smith // Analytical Chemistry. – 1997. – Vol. 69, Issue 24. – P. 4948-4956. – DOI: 10.1021/ac9708001.
  62. Piliarik, M. A new surface plasmon resonance sensor for high throughput screening applications / M. Piliarik, H. Vaisocherova, J. Homola // Biosensors and Bioelectronics. – 2005. – Vol. 20, Issue 10. – P. 2104-2110. – DOI: 10.1016/j.bios.2004.09.025.
  63. Cao, Z.L. High performing phase-based surface plasmon resonance sensing from metallic nanohole arrays / Z.L. Cao, S.L. Wong, S.Y. Wu, H.P. Ho, H.C. Ong // Applied Physics Letters. – 2014. – Vol. 104, Issue 17. – 171116. – DOI: 10.1063/1.4875019.
  64. Otto, L.M. Polarization interferometry for real-time spectroscopic plasmonic sensing / L.M. Otto, D.A. Mohr, T.W. Johnson, S.H. Oh, N.C. Lindquist // Nanoscale. – 2015. – Vol. 7, Issue 9. – P. 4226-4233. – DOI: 10.1039/C4NR06586G.
  65. Kravets, V.G. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection / V.G. Kravets, [et al.] // Nature Materials. – 2013. – Vol. 12. – P. 304-309. – DOI: 10.1038/nmat3537.
  66. Homola, J. Surface plasmon resonance sensors: Review / J. Homola, S. Sinclair, G. Gauglitz // Sensors and Actuators B: Chemical. – 1999. – Vol. 54, Issues 1-2. – P. 3-15. – DOI: 10.1016/S0925-4005(98)00321-9.
  67. Butt, M.A. Metal-Insulator-Metal nano square ring resonator for gas sensing applications / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Waves in Random and Complex Media. – 2019. – DOI: 10.1080/17455030.2019.1568609.
  68. Zhang, Z. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator / Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, Y. Han // Sensors. – 2018. – Vol. 18, Issue 1. – 116. – DOI: 10.3390/s18010116.
  69. Wu, T. The sensing characteristics of plasmonic waveguide with a ring resonator / T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, H. Ye // Optics Express. – 2014. – Vol. 22, Issue 7. – P. 7669-7677. – DOI: 10.1364/OE.22.007669.
  70. Wei, W. Plasmonic circular resonators for refractive index sensors and filters / W. Wei, X. Zhang, X. Ren // Nanoscale Research Letters. – 2015. – Vol. 10. – 211. – DOI: 10.1186/s11671-015-0913-4.
  71. Chen, Z. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system / Z. Chen, L. Yu // IEEE Photonics Journal. – 2014. – Vol. 6, Issue 6. – P. 1-8. – DOI: 10.1109/JPHOT.2014.2368779.
  72. Gaur, S. Plasmonic refractive index sensor based on metal insulator metal waveguide / S. Gaur, R. Zafar, D. Somwanshi // 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE). – 2016. – P. 1-4. – DOI. 10.1109/ICRAIE.2016.7939557.
  73. Zhang, Z. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors / Z. Zhang, L. Luo, C. Xue, W. Zhang, S. Yan // Sensors. – 2016. – Vol. 16, Issue 5. – 642. – DOI: 10.3390/s16050642.
  74. Yun, B.F. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator / B.F. Yun, G.H. Hu, R.H. Zhang, Y.P. Cui // Journal of Optics. – 2016. – Vol. 18, Issue 5. – 055002. – DOI: 10.1088/2040-8978/18/5/055002.
  75. Yan, S. Refractive index sensor based on a metal-insulator-metal waveguide coupled with a symmetric structure / S. Yan, M. Zhang, X. Zhao, Y. Zhang, J. Wang, W. Jin // Sensors. – 2017. – Vol. 17, Issue 12. – 2879. – DOI: 10.3390/s17122879.
  76. Zhao, X. Tunable Fano resonance in asymmetric MIM waveguide structure / X. Zhao, Z. Zhang, S. Yan // Sensors. – 2017. – Vol. 17, Issue 7. – 1494. – DOI: 10.3390/s17071494.
  77. Butt, M.A. Hybrid plasmonic waveguide-assisted Metal-Insulator-Metal ring resonator for refractive index sensing / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Journal of Modern Optics. – 2018. – Vol. 65, Issue 9. – P. 1135-1140. – DOI: 10.1080/09500340.2018.1427290.
  78. Rakhshani, M.R. Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring / M.R. Rakhshani, A. Tavousi, M.A. Mansouri-Birjandi // Applied Optics. – 2018. – Vol. 57, Issue 27. – P. 7798-7804. – DOI: 10.1364/AO.57.007798.
  79. Wang, L. A refractive index sensor based on an analogy T shaped metal-insulator-metal waveguide / L. Wang, Y.-P. Zeng, Z.-Y. Wang, X.-P. Xia, Q.-Q. Liang // Optik. – 2018. – Vol. 172. – P. 1199-1204. – DOI: 10.1016/j.ijleo.2018.07.093.
  80. Butt, M.A. Plasmonic refractive index sensor based on MIM square ring resonator / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // 2018 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube). – 2018. – DOI. 10.1109/ICECUBE.2018.8610998.
  81. Fang, Y. Multiple Fano resonances based on end-coupled semi-ring rectangular resonator / Y. Fang, K. Wen, Z. Li, B. Wu, L. Chen, J. Zhou, D. Zhou // IEEE Photonics Journal. – 2019. – Vol. 11, Issue 4. – 2914483. – DOI: 10.1109/JPHOT.2019.2914483.
  82. Chen, Y. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle / Y. Chen, Y. Xu, J. Cao // Results in Physics. – 2019. – Vol. 14. – 102420. – DOI: 10.1016/j.rinp.2019.102420.
  83. Yu, S. Tuning multiple Fano resonances for on-chip sensors in a plasmonic system / S. Yu, T. Zhao, J. Yu, D. Pan // Sensors. – 2019. – Vol. 19, Issue 7. – 1559. – DOI: 10.3390/s19071559.
  84. Asgari, S. Tunable Mid-Infrared refractive index sensor composed of asymmetric double graphene layers / S. Asgari, N. Granpayeh // IEEE Sensors Journal. – 2019. – Vol. 19, Issue 14. – P. 5686-5691. – DOI: 10.1109/JSEN.2019.2906759.
  85. Shi, Y. Controllable fano resonance based on coupled square split ring resonance cavity / Y. Shi, G.-M. Zhang, H.-L. An, N. Hu, M.-Q. Gu // Acta Photonica Sinica. – 2017. – Vol. 46, Issue 4. – 0413002. – DOI: 10.3788/gzxb20174604.0413002.
  86. Zafar, R. Enhanced figure of merit in fano resonance-based plasmonic / R. Zafar, M. Salim // IEEE Sensors Journal. – 2015. – Vol. 15, Issue 11. – P. 6313-6317. – DOI: 10.1109/JSEN.2015.2455534.
  87. Butt, M.A. A multichannel metallic dual nano-wall square split-ring resonator: design analysis and applications / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Laser Physics Letters. – 2019. – Vol. 16, Issue 12. – 126201. – DOI: 10.1088/1612-202X/ab5574.
  88. Kabashin, A.V. Plasmonic nanorod metamaterials for biosensing / A.V. Kabashin, [et al.] // Nature Materials. – 2009. – Vol. 8, Issue 11. – P. 867-871. – DOI: 10.1038/nmat2546.
  89. Danaie, M. Design of a high resolution metal-insulator-metal plasmonic refractive index sensor based on a ring shaped Si resonator / M. Danaie, A. Shahzadi // Plasmonics. – 2019. – DOI: 10.1007/s11468-019-00926-9.
  90. Song, M. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance / M. Song, [et al.] // Nanoscale. – 2016. – Vol. 8, Issue 3. – P. 1635-1641. – DOI: 10.1039/c5nr06504f.
  91. Cetin, A.E. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing / A.E. Cetin, H. Atlug // ACS Nano. – 2012. – Vol. 6, Issue 11. – P. 9989-9995. – DOI: 10.1021/nn303643w.
  92. Wang, Q. Linearly tunable Fano resonance modes in a plasmonic nanostructure with a waveguide loaded with two rectangular cavities coupled by a circular cavity / Q. Wang, Z. Ouyang, Y. Sun, M. Lin, Q. Liu // Nanomaterials. – 2019. – Vol. 9, Issue 5. – 678. – DOI: 10.3390/nano9050678.
  93. Ye, J. Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS / J. Ye, [et al.] // Nano Letters. – 2012. – Vol. 12, Issue 3. – P. 1660-1667. – DOI: 10.1021/nl3000453.
  94. Liu, J. Tunable multiple Fano resonance employing polarization-selective excitation of coupled surface-mode and nanoslit antenna resonance in plasmonic nanostructures / J. Liu, Z. Liu, H. Hu // Scientific Reports. – 2019. – Vol. 9. – 2414. – DOI: 10.1038/s41598-019-38708-2.
  95. Zhan, S. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide / S. Zhan, Y. Peng, Z. He, B. Li, Z. Chen, H. Xu, H. Li // Scientific Reports. – 2016. – Vol. 6. – 22428. – DOI: 10.1038/srep22428.
  96. Deng, Y. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities / Y. Deng, G. Cao, H. Yang, G. Li, X. Chen, W. Lu // Scientific Reports. – 2017. – Vol. 7. – 10639. – DOI: 10.1038/s41598-017-10626-1.
  97. Wen, Y. High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators / Y. Wen, [et al.] // Optics Communications. – 2019. – Vol. 446. – P. 141-146. – DOI: 10.1016/j.optcom.2019.04.068.
  98. Chen, F. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide / F. Chen, H. Zhang, L. Sun, J. Li, C. Yu // Optics and Laser Technology. – 2019. – Vol. 116. – P. 293-299. – DOI: 10.1016/j.optlastec.2019.03.044.
  99. Elshorbagy, M.H. Performance improvement of refractometric sensors through hybrid plasmonic Fano resonances / M.H. Elshorbagy, [et al.] // Journal of Lightwave Technology. – 2019. – Vol. 37, Issue 13. – P. 2905-2913. – DOI: 10.1109/JLT.2019.2906933.
  100. Liu, H. Metasurface generated polarization insensitive Fano resonance for high performance refractive index sensing / H. Liu, [et al.] // Optics Express. – 2019. – Vol. 27, Issue 9. – P. 13252-13262. – DOI: 10.1364/OE.27.013252.
  101. Li, Z. Refractive index sensor based on multiple fano resonances in a plasmonic MIM structure / Z. Li, [et al.] // Applied Optics. – 2019. – Vol. 58, Issue 18. – P. 4878-4883. – DOI: 10.1364/AO.58.004878.
  102. Wang, M. Fano Resonance in an Asymmetric MIM waveguide structure and its application in a refractive index nanosensor / M. Wang, M. Zhang, Y. Wang, R. Zhao, S. Yan // Sensors. – 2019. – Vol. 19, Issue 4. – 791. – DOI: 10.3390/s19040791.
  103. Zhang, B.H. Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure / B.H. Zhang, L.-L. Wang, H.-J. Li, [et al.] // Journal of Optics. – 2016. – Vol. 18, Issue 6. – 065001. – DOI: 10.1088/2040-8978/18/6/065001.
  104. Chen, F. Refractive index and temperature sensing based on defect resonator coupled with a MIM waveguide / F. Chen, J. Li // Modern Physics Letters B. – 2019. – Vol. 33, Issue 3. – 1950017. – DOI: 10.1142/S0217984919500179.
  105. Qi, L. Highly reflective long period fibre grating sensor and its application in refractive index sensing / L. Qi, C.L. Zhao, J.Y. Yuan, M.P. Ye, J. Wang, Z. Zhang, S. Jin // Sensors and Actuators B: Chemical. – 2014. – Vol. 193. – P. 185-189. – DOI: 10.1016/j.snb.2013.11.063.
  106. Wu, D.K.C. Ultrasensitive photonic crystal fibre refractive index sensor / D.K.C. Wu, B.T. Kuhlmey, B.J. Eggleton // Optics Letters. – 2009. – Vol. 34, Issue 3. – P. 322-324. – DOI: 10.1364/OL.34.000322.
  107. Shen, Y. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit / Y. Shen, J.H. Zhou, T.R. Liu, [et al.] // Nature Communications. – 2013. – Vol. 4, Issue 4. – 3381. – DOI: 10.1038/ncomms3381.
  108. Tang, Y. Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators / Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, S. Yan // Sensors. – 2017. – Vol. 17. – 784. – DOI: 10.3390/s17040784.
  109. Akhavan, A. Metal-insulator-metal waveguide-coupled asymmetric resonators for sensing and slow light applications / A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, H. Habibiyan // IET Optoelectronics. – 2018. – Vol. 12, Issue 5. – P. 220-227. – DOI: 10.1049/iet-opt.2018.0028.
  110. Lu, H. Plasmonic analog of electromagnetically induced transparency in multinanoresonator-coupled waveguide systems / H. Lu, X. Liu, D. Mao // Physical Review A. – 2012. – Vol. 85, Issue 5. – 053803. – DOI: 10.1103/PhysRevA.85.053803.
  111. Boller, K. Observation of electromagnetically induced transparency / K. Boller, A. Imamoglu, S.E. Harris // Physical Review Letters. – 1991. – Vol. 66, Issue 20. – P. 2593-2596. – DOI: 10.1103/PhysRevLett.66.2593.
  112. Chen, Y. Double Fano resonances based on different mechanisms in a MIM plasmonic system / Y. Chen, L. Chen, K. Wen, Y. Hu, W. Lin // Photonics and Nanostructures – Fundamentals and Applications. – 2019. – Vol. 36. – 100714. – DOI: 10.1016/j.photonics.2019.100714.
  113. Wen, K. A plasmonic chip-scale refractive index sensor design based on multiple Fano resonances / K. Wen, L. Chen, J. Zhou, L. Lei, Y. Fang // Sensors. – 2018. – Vol. 18. – 3181. – DOI: 10.3390/s18103181.
  114. Berini, P. Bulk and surface sensitivities of surface plasmon waveguides / P. Berini // New Journal of Physics. – 2008. – Vol. 10, Issue 10. – 105010. – DOI: 10.1088/1367-2630/10/10/105010.
  115. Daviau, R. Fabrication of surface plasmon waveguides and integrated components on Cytop / R. Daviau, A. Khan, E. Lisicka-Skrzek, R.N. Tait, P. Berini // Microelectronic Engineering. – 2010. – Vol. 87, Issue 10. – P. 1914-1921. – DOI: 10.1016/j.mee.2009.11.078.
  116. Krupin, O. Biosensing using straight long-range surface plasmon waveguides / O. Krupin, H. Asiri, Ch. Wang, R.N. Tait, P. Berini // Optics Express. – 2013. – Vol. 21, Issue 1. – P. 698-709. – DOI: 10.1364/OE.21.000698.
  117. Hayashi, S. Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing / S. Hayashi, D.V. Nesterenko, Z. Sekkat // Journal of Physics D: Applied Physics. – 2015. – Vol. 48, Issue 32. – 325303. – DOI: 10.1088/0022-3727/48/32/325303.
  118. Nesterenko, D.V. Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors / D.V. Nesterenko, S. Hayashi, Z. Sekkat // Journal of Optics. – 2016. – Vol. 18, Issue 6. – 065004. – DOI: 10.1088/2040-8978/18/6/065004.
  119. Refki, S. Resolution enhancement of plasmonic sensors by metal–insulator–metal structures / S. Refki, S. Hayashi, H. Ishitobi, D.V. Nesterenko, A. Rahmouni, Y. Inouye, Z. Sekkat // Annalen Der Physik. – 2018.– Vol. 530, Issue 4. – 1700411. – DOI: 10.1002/andp.201700411.
  120. COMSOL [Electronical Resource]. – URL: https://www.comsol.com (request date 20.04.2020).
  121. ANSYS [Electronical Resource]. – URL: https://www.ansys.com (request date 20.04.2020).
  122. Lumerical [Electronical Resource]. – URL: https://www.lumerical.com (request date 20.04.2020).
  123. Zand, I. Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs) / I. Zand, M.S. Abrishamian, P. Berini // Optics Express. – 2013. – Vol. 21, Issue 1. – P. 79-86. – DOI: 10.1364/OE.21.000079.
  124. Hirsch, L.R. A whole blood immunoassay using gold nanoshells / L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, J.L. West // Analytical Chemistry. – 2003. – Vol. 75. – P. 2377-2381. – DOI: 10.1021/ac0262210.
  125. Guler, U. Colloidal plasmonic titanium nitride nanoparticles: Properties and applications / U. Guler, S. Suslov, A.V. Kildishev, A. Boltasseva, V.M. Shalaev // Nanophotonics. – 2015. – Vol. 4, Issue 3. – P. 269-276. – DOI: 10.1515/nanoph-2015-0017.
  126. Behnam, M.A. Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photothermal therapy in a melanoma cancer model / M.A. Behnam, F. Emami, [et al.] // Advanced Pharmaceutical Bulletin. – 2018. – Vol. 8, Issue 1. – P. 94-95. – DOI: 10.15171/apb.2018.006.
  127. Zand, I. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonantors / I. Zand, A. Mahigir, T. Pakizeh, M.S. Abrishamian // Optics Express. – 2012. – Vol. 20, Issue 7. – P. 7516-7525. – DOI: 10.1364/OE.20.007516.
  128. Tao, H. Metamaterials on paper as a sensing platform / H. Tao, [et al.] // Advanced Materials. – 2011. – Vol. 23, Issue 28. – P. 3197-3201. – DOI: 10.1002/adma.201100163.
  129. Yanik, A.A. Seeing protein monolayers with naked eye through plasmonic Fano resonances / A.A. Yanik, A.E. Cetin, M. Huang, A. Artar, S. Hossein Mousavi, A. Khanikaev, J.H. Connor, G. Shvets, H. Altug // Proceedings of the National Academy of Sciences. – 2011. –DOI: 10.1073/pnas.1101910108.
  130. Hrelescu, C. Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars / C. Hrelescu, [et al.] // Nano Letters. – 2011. – Vol. 11, Issue 2. – P. 402-407. – DOI: 10.1021/nl103007m.
  131. Dondapati, S.K. Label-free biosensing based on single gold nanostars as plasmonic transducers / S.K. Dondapati, [et al.] // ACS Nano. – 2010. – Vol. 4, Issue 11. – P. 6318-6322. – DOI: 10.1021/nn100760f.
  132. Unger, A. Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids / A. Unger, [et al.] // Nano Letters. – 2009. – Vol. 9, Issue 6. – P. 2311-2315. – DOI: 10.1021/nl900505a.
  133. Shan, B. High-quality dual-plasmonic Au@Cu2-xSe nano­crescents with precise Cu2-xSe domain size control and tunable optical properties in the second near-infrared biowindow / B. Shan, Y. Zhao, Y. Li, H. Wang, R. Chen, M. Li // Chemistry of Materials. – 2019. – Vol. 31, Issue 23. – P. 9875-9886. – DOI: 10.1021/acs.chemmater.9b04100.
  134. Beeram, S.R. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing / S.R. Beeram, [et al.] // Journal of the American Chemical Society. – 2009. – Vol. 131, Issue 33. – P. 11689-11691. – DOI: 10.1021/ja904387j.
  135. Feuz, L. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas / L. Feuz, [et al.] // ACS Nano. – 2010. – Vol. 4, Issue 4. – P. 2167-2177. – DOI: 10.1021/nn901457f.
  136. Liu, N. Three-dimensional plasmon rulers / N. Liu, [et al.] // Science. – 2011. – Vol. 332, Issue 6036. – P. 1407-1410. – DOI: 10.1126/science.1199958.
  137. Bolduc, O.R. Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques / O.R. Bolduc, [et al.] // Analytical Chemistry. – 2011. – Vol. 83, Issue 21. – P. 8057-8062. – DOI: 10.1021/ac2012976.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20