(44-6) 13 * << * >> * Русский * English * Содержание * Все выпуски
  
The study of skeleton description reduction in the human fall-detection task
O.S. Seredin 1, A.V. Kopylov 1, E.E. Surkov 1
   1 Tula State University, 300012, Tula, Russia, Lenin Ave. 92
 PDF, 2296 kB
  PDF, 2296 kB
DOI: 10.18287/2412-6179-CO-753
Страницы: 951-958.
Язык статьи: English
Аннотация:
Accurate and reliable  real-time fall detection is a key aspect of any intelligent elderly people care  system. A lot of modern RGB-D cameras can provide a skeleton description of a human  figure as a compact pose presentation. This makes it possible to use this  description for further analysis without access to real video and, thus, to  increase the privacy of the whole system. The skeleton description reduction  based on the anthropometrical characteristics of a human body is proposed. The  experimental study on the TST Fall Detection dataset v2 by the Leave-One-Person-Out  method shows that the proposed skeleton description reduction technique  provides better recognition quality and increases the overall performance of a  Fall-Detection System.
Ключевые слова:
fall detection, human activity detection, skeleton description, RGB-D camera, elderly people care system.
Благодарности
The work is supported by  the Russian Fund for Basic Research, grants 18-07-00942, 18-07-01087,  20-07-00441. The results of the research project are published with the  financial support of Tula   State University  within the framework of the scientific project 2019-21NIR. The part of the research  is carried out using the equipment of the shared research facilities of HPC  computing resources at Lomonosov   Moscow State   University.
Citation:
Seredin OS, Kopylov AV, Surkov EE. The study of skeleton description reduction in the human fall-detection task. Computer Optics 2020; 44(6): 951-958. DOI: 10.18287/2412-6179-CO-753.
Литература:
  - Falls. World Health  Organization. Source: <https://www.who.int/en/news-room/fact-sheets/detail/falls>.
- Wild K, et al.  Unobtrusive in-home monitoring of cognitive and physical health: Reactions and  perceptions of older adults. J Appl Gerontol 2008; 27: 181-200. 
 
- Mastorakis  G, Makris D. Fall detection system using Kinect’s infrared sensor. J Real-Time  Image Process 2012; 9(4): 635-646.
 
- Demiris  G, et al. Older adults’ privacy considerations for vision based recognition  methods of eldercare applications. Technol Heal Care 2009; 17(1): 41-48.
 
- Seredin OS,  Kopylov AV, Huang S-C, Rodionov DS. A skeleton features-based fall detection  using Microsoft Kinect v2 with one class-classifier outlier removal. Int Arch  Photogramm Remote Sens Spat Inf Sci 2019; 42(2:W12): 189-195.
 
- Mundher  Z, Zhong J. A real-time fall detection system in elderly care using mobile  robot and Kinect sensor. Int J Mater Mech Manuf 2014; 2(2): 133-138.
 
- Wang  J, et al. Mining actionlet ensemble for action recognition with depth cameras.  Proc IEEE Comp Soc Conf Comp Vis Pattern  Recognit 2012: 1290-1297.
 
- Vemulapalli  R, Arrate F, Chellappa R. Human action recognition by representing 3D skeletons  as points in a lie group. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit  2014: 588-595.
 
- Hussein  ME, et al. Human action recognition using a temporal hierarchy of covariance  descriptors on 3D joint locations. IJCAI Int Jt Conf Artif Intell 2013:  2466-2472.
 
- Papandreou G, et al. Towards  accurate multi-person pose estimation in the wild. Proc 30th IEEE  Conf Comput Vis Pattern Recognit (CVPR) 2017; 2017: 3711-3719.
 
- Pathak D, Bhosale VK. Fall detection  for elderly people in homes using Kinect Sensor. Int J Innov Res Comput Commun  Eng 2017; 5(2): 1468-1474.
 
- Bevilacqua V, et al. Fall detection  in indoor environment with Kinect sensor. 2014 IEEE Int Symp Innov Intell Syst  Appl Proc 2014: 319-324.
 
- Chen C, et al. Learning a 3D human  pose distance metric from geometric pose descriptor. IEEE Trans Vis Comput Graph 2011; 17(11): 1676-1689.
 
- Zhang S, Liu X, Xiao J. On geometric  features for skeleton-based action recognition using multilayer LSTM networks.  Proc 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)  2017: 148-157.
 
- Zhang X, Xu C, Tao D. Graph edge convolutional neural  networks for skeleton based action recognition. 2018. P. 1–22.
 
- Du Y, Wang W, Wang L. Hierarchical  recurrent neural network for skeleton based action recognition. Proc IEEE  Comput Soc Conf Comput Vis Pattern Recognit 2015; 07-12-June: 1110-1118.
 
- Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional  networks for skeleton-based action recognition. arXiv Preprint 2018. Source: <https://arxiv.org/abs/1801.07455>.
 
- TST Fall detection dataset v2. IEEE  DataPort. Source: <https://ieee-dataport.org/documents/tst-fall-detection-dataset-v2>.
 
- Sung  J, et al. Unstructured human activity detection from RGBD images. Proc IEEE Int  Conf on Robotics and Automation 2012: 842-849.
 
- Page  ES. Continuous inspection schemes. Biometrika 1954; 41(1/2): 100-115.
 
- Gasparrini  S, Cippitelli E, Gambi E, Spinsante S, Wåhslén J, Orhan I, Lindh T. Proposal  and experimental evaluation of fall detection solution based on wearable and  depth data fusion. In Book: Loshkovska SSK, ed. ICT Innovations 2015: Advances  in intelligent systems and computing. Cham: Springer; 2016: 99-108.
 
- Fakhrulddin  AH, Fei X, Li H. Convolutional neural networks (CNN) based human fall detection  on Body Sensor Networks (BSN) sensor data. Proc 2017 4th Int Conf  Syst Informatics (ICSAI) 2018: 1461-1465.
 
- Hwang  S, Ahn D, Park H, Park T. Maximizing accuracy of fall detection and alert  systems based on 3D convolutional neural network. Proc Second Int Conf  Internet-of-Things Des Implement (IoTDI’17) 2017: 343-344.       
      
- Min W, Yao L, Lin Z, Liu  L. Support vector machine approach to fall recognition based on simplified expression  of human skeleton action and fast detection of start key frame using torso  angle. IET Comput Vis 2018; 12(8): 1133-1140.
 .
 
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7  (846)  242-41-24 (ответственный
      секретарь), +7 (846)
      332-56-22 (технический  редактор), факс: +7 (846) 332-56-20