(45-3) 13 * << * >> * Русский * English * Содержание * Все выпуски

Adaptive color space model based on dominant colors for image and video compression performance improvement
S. Madenda 1, A. Darmayantie 1

Computer Engineering Department, Gunadarma University,
Jl. Margonda Raya. No. 100, Depok – Jawa Barat, Indonesia

 PDF, 4152 kB

DOI: 10.18287/2412-6179-CO-780

Страницы: 405-417.

Язык статьи: English

Аннотация:
This paper describes the use of some color spaces in JPEG image compression algorithm and their impact in terms of image quality and compression ratio, and then proposes adaptive color space models (ACSM) to improve the performance of lossy image compression algorithm. The proposed ACSM consists of, dominant color analysis algorithm and YCoCg color space family. The YCoCg color space family is composed of three color spaces, which are YCcCr, YCpCg and YCyCb. The dominant colors analysis algorithm is developed which enables to automatically select one of the three color space models based on the suitability of the dominant colors contained in an image. The experimental results using sixty test images, which have varying colors, shapes and textures, show that the proposed adaptive color space model provides improved performance of 3 % to 10 % better than YCbCr, YDbDr, YCoCg and YCgCo-R color spaces family. In addition, the YCoCg color space family is a discrete transformation so its digital electronic implementation requires only two adders and two subtractors, both for forward and inverse conversions.

Ключевые слова:
colors dominant analysis, adaptive color space, image compression, image quality, compression ratio.

Благодарности
Thank you to Gunadarma University for providing funding support during the research and publication process.

Citation:
Madenda S, Darmayantie A. Adaptive color space model based on dominant colors for image and video compression performance improvement. Computer Optics 2021; 45(3): 405-417. DOI: 10.18287/2412-6179-CO-780.

Литература:

  1. Wallace GK. The JPEG still picture compression standard. IEEE Trans Consum Electron 1992; 38(1): 18-34.
  2. Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard. IEEE Signal Process Mag 2001; 18(5): 36-58.
  3. Saptariani T, Madenda S, Ernastuti, Silfianti W. Accelerating compression time of the standard JPEG by employing the quantized YCbCr color space algorithm. Int J Electr Comput Eng 2018; 8(6): 4343-4351.
  4. Rao KR, Hwang JJ. Techniques and standards for image, video and audio coding. Englewood Cliffs, NJ: Prentice-Hall; 1996.
  5. Bhaskaran V, Konstantinides K. Image and video compression standards: Algorithms and applications. 2nd ed. Norwell, MA: Kluwer; 1997.
  6. Progressive lossy to lossless core experiment with a region of interest: Results with the S, S+P, two-ten integer wavelets and with the difference coding method. ISO/IEC JTC1/SC29/WG1 N741, March 1998.
  7. Nadenau MJ, Reichel J. Opponent color, human vision and wavelets for image compression. Proc 7th Color Imaging Conf 1999; 237-242.
  8. Taubman DS, Marcellin MW. JPEG2000 image compression fundamentals, standards and practice. Kluwer Academic Publishers; 2002.
  9. Pasteau F, Strauss C, Babel M, Déforges O, Bédat L. Improved colour decorrelation for lossless colour image compression using the LAR codec. European Signal Processing Conference (EUSIPCO’09) 2009; 1-4.
  10. Malvar HS, Sullivan GJ. Transform, scaling & color space impact of professional extensions. ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-H031 May 2003.
  11. Malvar HS, Sullivan GJ. YCoCg-R: A color space with RGB reversibility and low dynamic range, joint video team (JVT) of ISO/IEC MPEG & ITU-T VCEG, (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), JVT PExt Ad Hoc Group Meeting 22-24 July 2003.
  12. Malvar HS, Sullivan GJ, Srinivasan S. Lifting-based reversible color transformations for image compression. Proc SPIE 2008; 7073: 707307.
  13. Strutz, T. Multiplierless reversible colour transforms and their automatic selection for image data compression. IEEE Trans Circuits Syst Video Technol 2013; 23(7): 1249-1259. DOI: 10.1109/TCSVT.2013.2242612.
  14. Marpe D, Kirchhoffer H, George V, Kauff P, Wiegand T. An adaptive color transform approach and its application in 4:4:4 video coding. Proc EUSIPCO 2006; 1-5.
  15. Strutz T, Leipnitz A. Adaptive colour-space selection in high efficiency video coding. 2017 25th European Signal Processing Conference (EUSIPCO) 2017; 1534-1538. doi: 10.23919/EUSIPCO.2017.8081466.
  16. Schaefer G, Stich M. UCID – An uncompressed colour image database. Proc SPIE 2004; 5307: 472-480.
  17. Index of /strutz/Papers/Testimages. Source:  <https://www1.hft-leipzig.de/strutz/Papers/Testimages/>.
  18. Resources of ACSS. Source: <https://www1.hft-leipzig.de/strutz/Papers/ACSS-resources/>.
  19. Index of /strutz/Papers/Testimages. Source: <http://jasoncantarella.com/downloads/ucid.v2.tar.gz>.
  20. Public-domain test images for homeworks and projects. Source: <https://homepages.cae.wisc.edu/~ece533/images/>.
  21. SeedArea. Rose – seeds (Mix-color). Source: <http://www.seedarea.com/rose-seeds/136-rose-seeds-mix-color.html>.
  22. ImpulseAdventure. JPEG compression quality from quantization tables. Source: <http://www.impulseadventure.com/photo/jpeg-quantization.html>.
  23. Winkler S, van den Branden Lambrecht CJ, Kunt M. Vision and video: Models and applications. In Book: van den Branden Lambrecht ChJ, ed. Vision models and applications to image and video processing. Boston: Springer; 2001: 201-229.
  24. Poynton Ch. Digital video and HDTV: Algorithms and interfaces. US Morgan Kaufmann Publishers; 2003.
  25. Uhrina M, Bienik J, Mizdos T. Chroma subsampling influence on the perceived video quality for compressed sequences in high resolutions. Adv Electr Electron Eng 2017; 15(4): 692-700.
  26. Ahmed N, Natarajan T, Rao KR. Discrete cosine transform. IEEE Trans Comput 1974; C-23(1): 90-93.
  27. Narasinha NJ, Peterson AM. On the computation of the discrete cosine transform. IEEE Trans Commun 1978; COM-26(6): 966-968.
  28. Lee BG. A new algorithm to compute the discrete cosine transform. IEEE Trans Acoust Speech Signal Process 1984; ASSP-32(6): 1243-1245.
  29. Mandyam GD, Ahmed NU, Magotra N. DCT-based scheme for lossless image compression. Proc SPIE 1995; 2419: 474-478. DOI: 10.1117/12.206386.
  30. Madenda S, Pengolahan citra dan video digital: Teori, algoritma dan pemrograman Matlab. Jakarta: Erlangga, 2005.
  31. Gonzalez RC, Woods RE. Digital image processing. 2nd ed. Prentice Hall; 2002.
  32. Madenda S, Missaoui R. A new perceptually uniform color space with associated color similarity measure for content- based image and video retrieval. Proceedings of Multimedia Information Retrieval Workshop, 28th annual ACM Sigir Conference 2005; 1-8.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20