(46-1) 05 * << * >> * Русский * English * Содержание * Все выпуски
  
Создание и фокусировка векторного пучка второго порядка с помощью субволнового оптического элемента
  С.А. Дегтярев 1,2, Д.А. Савельев 1,2
   1 ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
 
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
  2 Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34
 PDF, 1220 kB
  PDF, 1220 kB
DOI: 10.18287/2412-6179-CO-1053
Страницы: 39-47.
Аннотация:
В данной статье предложен  вид субволновых аксиконов для создания и фокусировки векторных цилиндрических  пучков второго порядка. При этом показано, что с помощью предложенных  субволновых аксиконов можно создавать фокусные пятна с обратным потоком  энергии. С помощью программы Comsol Multiphysics проведено моделирование работы субволновых аксиконов с различным углом  закрутки. Показано различие получаемых распределений плотности потока мощности при  различных углах закрутки спирали аксикона.
Ключевые слова:
субволновые аксиконы, векторные цилиндрические пучки, метод конечных элементов, обратный поток, Comsol Multiphysics.
Благодарности
Работа  выполнена при поддержке средств финансирования Программы развития Самарского  университета на 2021- 2030 годы в рамках программы «Приоритет-2030» в части «Введение»  и Российского научного фонда (проект № 20-72-00051) в остальных частях.
Цитирование:
Дегтярев, С.А. Создание и фокусировка векторного пучка второго порядка с помощью субволнового оптического элемента / С.А. Дегтярев, Д.А. Савельев // Компьютерная оптика. – 2022. – Т. 46, № 1. – С. 39-47. – DOI: 10.18287/2412-6179-CO-1053.
Citation:
Degtyarev SA, Savelyev DA. Generation and focusing of a second-order vector beam using a subwavelength optical element. Computer Optics 2022; 46(1): 39-47. DOI: 10.18287/2412-6179-CO-1053.
References:
  - Xiao S, Wang T, Liu T,  Zhou C, Jiang X, Zhang J. Active metamaterials and metadevices: a review. J Phys D–Appl Phys 2020; 53(50): 503002. DOI:  10.1088/1361-6463/abaced.
- Krzysztofik WJ, Cao TN.  Metamaterials in application to improve antenna parameters. Metamaterials and Metasurfaces 2018; 12(2): 63-85. DOI:  10.5772/intechopen.80636. 
 
- Gnawali  R, Banerjee PP, Haus JW, Reshetnyak V, Evans DR. Optical propagation through  anisotropic metamaterials: Application to metallo-dielectric stacks. Opt Commun 2018; 425: 71-79. DOI: 10.1016/j.optcom.2018.04.069.
 
- Chon  JWM, Iniewski K. Nanoplasmonics: advanced device applications. CRC Press; 2018.  ISBN: 978-1-4665-1426-3.
 
- Soukoulis  CM, Wegener M. Past achievements and future challenges in the development of  three-dimensional photonic metamaterials. Nat Photon 2011; 5(9): 523. DOI: 10.1038/nphoton.2011.154.
 
- Petronijevic  E, Sibilia C. Thin films of phase change materials for light control of  metamaterials in the optical and infrared spectral domain. Opt Quantum Electron 2020; 52(2): 1-10. DOI: 10.1007/s11082-020-2237-6.
 
- Cui TJ. Microwave metamaterials—from  passive to digital and programmable controls of electromagnetic waves. J Opt 2017; 19(8): 084004. DOI: 10.1088/2040-8986/aa7009.
 
- Shalaev  VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV.  Negative index of refraction in optical metamaterials. Optics Letters 2005;  30(24): 3356-3358. DOI: 10.1364/OL.30.003356
 
- Gómez-Castaño  M, Garcia-Pomar JL, Pérez LA, Shanmugathasan S, Ravaine S, Mihi A.  Electrodeposited negative index metamaterials with visible and near infrared response.  Adv Opt Mater 2020; 8(19): 2000865. DOI: 10.1002/adom.202000865.
 
- Lapine  M, Shadrivov IV, Kivshar YS. Colloquium: nonlinear metamaterials. Rev Mod Phys  2014; 86(3): 1093. DOI: 10.1103/RevModPhys.86.1093.
 
- Boltasseva  A, Atwater HA.  Low-loss plasmonic metamaterials. Science 2011; 331(6015): 290-291. DOI: 10.1126/science.1198258.
 
- Bukhari  SS, Vardaxoglou JY, Whittow W. A metasurfaces review: Definitions and  applications. Appl Sci 2019; 9(13): 2727. DOI: 10.3390/app9132727.
 
- Kildishev  AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;  339(6125): 1232009. DOI: 10.1126/science.1232009.
 
- Zhang  X, Li Q, Liu F, Qiu M, Sun S, He Q, Zhou L. Controlling angular dispersions in  optical metasurfaces. Light Sci Appl  2020; 9(1): 1-12. DOI: 10.1038/s41377-020-0313-0.
 
- Han  Y, Chen S, Ji C, Liu X, Wang Y, Liu J, Li J. Reprogrammable optical  metasurfaces by electromechanical reconfiguration. Opt Express 2021; 29(19):  30751-30760. DOI: 10.1364/OE.434321.
 
- Dorrah  AH, Rubin NA, Zaidi A, Tamagnone M, Capasso F. Metasurface optics for on-demand  polarization transformations along the optical path. Nat Photon 2021; 15(4):  287-296. DOI: 10.1038/s41566-020-00750-2.
 
- McLeod  JH. The axicon: a new type of optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
 
- Alferov  SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics  probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807.  DOI: 10.1364/JOSAA.31.000802.
 
- Khonina  S, Degtyarev S, Savelyev D, Ustinov A. Focused, evanescent, hollow, and  collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16):  19052-19064. DOI: 10.1364/OE.25.019052.
 
- Filipkowski  A, Piechal B, Pysz D, Stepien R, Waddie A, Taghizadeh MR, Buczynski R.  Nanostructured gradient index microaxicons made by a modified stack and draw  method Opt Lett 2015; 40(22): 5200-5203. DOI: 10.1364/OL.40.005200.
 
- Savelyev  DA, Ustinov AV, Khonina SN, Kazanskiy NL.  Layered lens with a linear dependence of the refractive index change. Proc SPIE  2016; 9807: 98070P. DOI: 10.1117/12.2234404.
 
- Golub  I, Chebbi B, Shaw D, Nowacki D. Characterization of a refractive logarithmic  axicon. Opt Lett 2010; 35(16): 2828-2830. DOI: 10.1364/OL.35.002828.
 
- Gorelick  S, Paganin DM, de Marco A. Axilenses: refractive micro-optical elements with  arbitrary exponential profiles. APL Photonics 2020; 5(10): 106110. DOI: 10.1063/5.0022720.
 
- Khonina  SN, Ustinov AV. Very compact focal spot in the near-field of the fractional  axicon. Opt Commun 2017; 391: 24-29. DOI: 10.1016/j.optcom.2016.12.034.
 
- Khonina  SN, Savel'ev DA, Pustovoĭ IA, Serafimovich PG. Diffraction at binary  microaxicons in the near field. J Opt  Technol 2012; 79(10): 626-631. DOI: 10.1364/JOT.79.000626.
 
- Savelyev  DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian  beams. Computer Optics  2015; 39(5): 654-662. DOI:  10.18287/0134-2452-2015-39-5-654-662.
 
- Westheimer  G. Focused and defocused retinal images with Bessel and axicon pupil functions.  J Opt Soc Am A 2020; 37(1): 108-114. DOI: 10.1364/JOSAA.37.000108.
 
- Savelyev  DA. The investigation of the features of focusing vortex super-Gaussian beams  with a variable-height diffractive axicon. Computer Optics 2021; 45(2):  214-221. DOI: 10.18287/2412-6179-CO-862.
 
- Khonina  SN, Savelyev DA, Kazanskiy NL. Analysis of polarisation states at sharp  focusing. Optik 2016; 127(6):  3372-3378. DOI: 10.1016/j.ijleo.2015.12.108.
 
- Rajesh  KB, Suresh NV, Anbarasan PM, Gokulakrishnan K,  Mahadevan G. Tight focusing of double ring shaped radially polarized beam with  high NA lens axicon. Opt Laser Technol  2011; 43(7): 1037-1040.  DOI: 10.1016/j.optlastec.2010.11.009.
 
- Savelyev D, Kazanskiy N. Near-field vortex beams diffraction  on surface micro-defects and diffractive axicons for polarization state  recognition. Sensors 2021; 21(6): 1973. DOI: 10.3390/s21061973. 
 
- Khonina  SN, Volotovsky SG. Application axicons in a large-aperture focusing system. Optical Memory and Neural Networks 2014;  23(4): 201-217. DOI: 10.3103/S1060992X14040043.
 
- Savelyev DA. The sub-wavelength complex  micro-axicons for focal spot size reducing using high-performance computer  systems. Proc SPIE 2021; 11769: 1176918. DOI: 10.1117/12.2589220. 
 
- Savelyev  DA, Khonina SN. Maximising the longitudinal electric component at diffraction  on a binary axicon linearly polarized radiation. Computer Optics 2012; 36(4):  511-517.
 
- Khonina SN,  Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental  demonstration of the generation of the longitudinal E-field component on the  optical axis with high-numerical-aperture binary axicons illuminated by  linearly and circularly polarized beams. J Opt 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
 
- Khonina  SN, Degtyarev SA. Analysis of the formation of a longitudinally polarized  optical needle by a lens and axicon under tightly focused conditions. J Opt Technol 2016; 83(4): 197-205.  DOI: 10.1364/JOT.83.000197.
 
- Ravi V, Suresh P, Rajesh KB, Jaroszewicz Z,  Anbarasan PM, Pillai TVS. Generation of sub-wavelength longitudinal magnetic  probe using high numerical aperture lens axicon and binary phase plate. J Opt 2012; 14(5): 055704. DOI: 10.1088/2040-8978/14/5/055704.
 
- Zhan  Q. Cylindrical vector beams: from mathematical concepts to applications. Adv  Opt Photonics 2009; 1(1): 1-57. DOI: 10.1364/AOP.1.000001.
 
- Savelyev DA. The investigation of focusing of  cylindrically polarized beams with the variable height of optical elements  using high-performance computer systems. Proc SPIE 2021; 11793: 117930X. DOI: 10.1117/12.2591993. 
 
- Livakas N, Skoulas E, Stratakis E. Omnidirectional  iridescence via cylindrically-polarized femtosecond laser processing.  Opto-Electron Adv 2020; 3(5): 190035. DOI: 10.29026/oea.2020.190035. 
 
- Degtyarev  SA, Volotovsky SG, Khonina SN. Sublinearly chirped metalenses for forming  abruptly autofocusing cylindrically polarized beams. J Opt Soc Am B 2018;  35(8): 1963-1969. DOI: 10.1364/JOSAB.35.001963.
 
- Savelyev  DA, Khonina SN, Golub I. Tight focusing of higher orders Laguerre-Gaussian  modes. AIP Conf Proc 2016; 1724: 020021. DOI: 10.1063/1.4945141.
 
- Qiao  W, Lei T, Wu Z, Gao S, Li Z, Yuan X. Approach to multiplexing fiber  communication with cylindrical vector beams. Opt Lett 2017; 42(13):  2579-2582. DOI: 10.1364/OL.42.002579.
 
- Millione  G, Nguyen ThA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of  vector beams to encode information for optical communication. Opt Lett 2015;  40(21): 4887-4890. DOI: 10.1364/OL.40.004887.
 
- Zhou  Z, Zhu L. Tight focusing of axially symmetric polarized beams with fractional  orders. Opt Quant Electron 2015; 48: 1-9. DOI: 10.1007/s11082-015-0260-9.
 
- Khonina SN,  Ustinov AV, Degtyarev SA., Inverse energy flux of focused radially polarized  optical beams. Phys Rev A 2018; 98(4): 043823. DOI: 10.1103/PhysRevA.98.043823.
 
- Stafeev  SS, Nalimov AG, Kotlyar VV. Energy backflow in a focal spot of the cylindrical  vector beam. Computer Optics 2018; 42(5): 744-750. DOI:  10.18287/2412-6179-2018-42-5-744-750.
 
- Novitsky  AV, Novitsky DV. Negative propagation of vector Bessel beams. J Opt Soc Am A  2007; 24(9): 2844-2849. DOI: 10.1364/JOSAA.24.002844.
 
- Guarnieri  G, Uchiyama C, Vacchini B. Energy backflow and non-Markovian dynamics. Phys Rev A 2016; 93(1): 012118. DOI: 10.1103/PhysRevA.93.012118.
 
- Kotlyar VV,  Nalimov AG. A vector optical vortex generated and focused using a metalens.  Computer Оptics 2017; 41(5): 645-654. DOI:  10.18287/2412-6179-2017-41-5-645-654.
 
- Kotlyar  VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with  phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
 
- Kos Ž, Ravnik M. Field generated nematic  microflows via backflow mechanism. Sci  Rep 2020; 10(1): 1-10.  DOI: 10.1038/s41598-020-57944-5.
 
- Khonina  SN, Savelyev DA. Optimization of the optical microelements using  high-performance computer systems. Radiophys Quant El+ 2015; 57(8-9): 650-658.  DOI: 10.1007/s11141-015-9550-0.
 
- Degtyarev  SA, Savelyev DA, Khonina SN. Subwavelength diffraction grating with continuous  ridges for inverse energy flux generation. PIERS-Spring 2019: 2005-2010. DOI: 10.1109/PIERS-Spring46901.2019.9017337.
 
- Vajdi  M, Moghanlou FS, Sharifianjazi F, Asl MS, Shokouhimehr M. A review on the  Comsol Multiphysics studies of heat transfer in advanced ceramics. J Compos Compd 2020; 2(2): 35-43. DOI: 10.29252/jcc.2.1.5.
 
- Degtyarev  SA, Savelyev DA, Karpeev SV. Diffractive optical elements for generating  cylindrical beams of different orders. Computer Optics 2019; 43(3):  347-355. DOI: 10.18287/2412-6179-2019-43-3-347-355.
 
- Degtyarev  S, Savelyev D, Khonina S, Kazanskiy N. Metasurfaces with continuous ridges for  inverse energy flux generation. Opt  Express 2019; 27(11): 15129-15135. DOI: 10.1364/OE.27.015129.
 
- Bomzon  ZE, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase  optical elements with computer-generated subwavelength gratings. Opt Lett 2002;  40(21): 1141-1143. DOI: 10.1364/OL.27.001141.       
      
- Khonina SN, Tukmakov KN, Degtyarev SA, Reshetnikov AS,  Pavelyev VS, Knyazev BA, Choporova YuYu. Design, fabrication and investigation  of a subwavelength axicon for terahertz beam polarization transforming. Computer  Optics 2019; 43(5): 756-764. DOI: 10.18287/2412-6179-2019-43-5-756-764. 
 
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20