(46-1) 14 * << * >> * Русский * English * Содержание * Все выпуски
  
wEscore: quality assessment method of multichannel image visualization with regard to angular resolution
D.S. Sidorchuk 1
   1 Institute for Information Transmission Problems of Russian Academy of Sciences (Kharkevich Institute),
127051 Moscow, Bolshoy Karetny pereulok 19, Russia
  PDF, 1607 kB
DOI: 10.18287/2412-6179-CO-911
Страницы: 113-120.
Язык статьи: English.
 
Аннотация:
This  work considers the problem of quality  assessment of multichannel image visualization methods. One approach to such an assessment, the Escore quality measure,  is studied. This measure, initially proposed  for decolorization methods evaluation, can be generalized  for the assessment of hyperspectral image visualization methods. It is shown that Escore does not account for the loss of  local contrast at the supra-pixel scale. The  sensitivity to the latter in humans depends on  the observation conditions, so we  propose a modified wEscore measure which includes the parameters  allowing for  the adjustment of the local contrast scale based on the angular resolution of the images. We also describe the  adjustment of wEscore parameters for the evaluation of known decolorization  algorithms applied to the images from the COLOR250 and the Cadik datasets with  given observational conditions. When ranking the results of these algorithms and comparing it to the ranking based  on human perception, wEscore turned out to be  more accurate than Escore.
Ключевые слова:
hyperspectral image  visualization, decolorization, Escore, local contrast.
Благодарности
This work was supported  by Russian Science Foundation (Project No. 20-61-47089).
Citation:
Sidorchuk DS. wEscore: quality assessment method of multichannel image visualization with regard to angular resolution. Computer Optics 2022; 46(1): 113-120. DOI: 10.18287/2412-6179-CO-911.
References:
  - Zhizhin  MN, Elwidge K, Poyda AA, Godunov AI, Velikhov VE, Erokhin GN, Alsynbaev KS,  Bryksin VM. Using remote sensing data to monitor hydrocarbon production [In  Russian]. Informatsionnye Tekhnologii i  Vychslitel'nye Sistemy 2014; 3: 97-111.
 
  - ENVI –  Image processing and analysis solution. Source: <https://www.ittvis.com/envi/>. 
     - ERDAS Imagine. Source: <https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine>.
       - Sarycheva A, Grigoryev A, Sidorchuk D, Vladimirov G,  Khaitovich P, Efimova O, Gavrilenko O, Stekolshchikova  E, Nikolaev E, Kostyukevich Y. Structure-preserving  and perceptually consistent approach for visualization of mass spectrometry  imaging datasets. Anal Chem 2020; 93(3): 1677-1685. DOI:  10.1021/acs.analchem.0c04256. 
       - Smets T, Verbeeck N, Claesen M, Asperger A, Griffioen  G, Tousseyn T, Waelput W, Waelkens E, De Moor B. Evaluation of distance metrics  and spatial autocorrelation in uniform manifold approximation and projection applied  to mass spectrometry imaging data. Anal Chem 2019; 91(9): 5706-5714. DOI:  10.1021/acs.analchem.8b05827. 
       - Bratchenko  IA, Alonova MV, Myakinin OO, Moryatov AA, Kozlov SV, Zakharov VP. Hyperspectral  visualization of skin pathologies in visible region. Computer Optics 2016;  40(2): 240-248. DOI: 10.18287/2412-6179-2016-40-2-240-248.
       - Ready P, Wintz P. Information extraction, SNR improvement,  and data compression in multispectral imagery. IEEE Trans Commun 1973; 21(10):  1123-1131. DOI: 10.1109/TCOM.1973.1091550.
       - Tyo JS,  Konsolakis A, Diersen DI, Olsen RC. Principal-components-based display strategy  for spectral imagery. IEEE Trans Geosci Remote Sens 2003; 41(3): 708-718. DOI:  10.1109/TGRS.2003.808879. 
       - Sidorchuk  DS, Volkov VV, Nikonorov AV. Comparison of the nonlinear contrast-preserving  visualization method for multispectral images with well-known decolorization  algorithms [In Russian]. Information Processes 2020; 20(1):  41-54. 
       - Sokolov V,  Nikolaev D, Karpenko S, Schaefer G. On contrast-preserving visualisation of  multispectral datasets. International Symposium on Visual Computing 2010:  173-180. 
       - Socolinsky  DA, Wolff LB. A new visualization paradigm for multispectral imagery and data  fusion. Proc IEEE Computer Society Conference on Computer Vision and Pattern  Recognition 1999: 319-324. DOI: 10.1109/CVPR.1999.786958. 
       - Sidorchuk DS, Konovalenko IA, Gladilin SA, Maksimov YI.  Noise estimation for multispectral visualization. Sensornye Sistemy 2016; 30(4):  344-350.
       - Sidorchuk DS, Volkov VV. Fusion of radar, visible and  thermal imagery with account for differences in brightness and chromaticity  perception. Sensornye Sistemy 2018; 32(1): 14-18. DOI:  10.7868/S0235009218010031.
       - Zhang B, Yu X. Hyperspectral image visualization using  t-distributed stochastic neighbor embedding. Proc SPIE 2015; 9815: 981504. DOI:  10.1117/12.2205840. 
       - Liao D, Qian Y, Zhou J. Visualization of hyperspectral  imaging data based on manifold alignment. 22nd Int Conf on Pattern  Recognition 2014: 70-75. DOI: 10.1109/ICPR.2014.22. 
       - Myasnikov  EV. Nonlinear mapping methods with adjustable computational complexity for  hyperspectral image analysis. Proc SPIE 2015; 9875: 987508. DOI:  10.1117/12.2228831. 
       - Myasnikov  EV. Fast techniques for nonlinear mapping of hyperspectral data. Proc SPIE  2017; 10341: 103411D. DOI: 10.1117/12.2268707. 
       - Lu C, Xu L, Jia J.  Contrast preserving decolorization with perception-based quality metrics. International  journal of computer vision 2014; 110(2): 222-239. 
       - Lu C, Xu L, Jia J. Contrast  preserving decolorization. IEEE Int Conf on Computational Photography 2012:  1-7. DOI: 10.1109/ICCPhot.2012.6215215. 
       - Hayes AE, Finlayson GD, Montagna R. RGB-NIR image  fusion: metric and psychophysical experiments. Proc SPIE 2015; 9396: 93960U.  DOI: 10.1117/12.2079224. 
       - Liao D, Chen S, Qian Y. Visualization of hyperspectral  images using moving least squares. 24th Int Conf on Pattern  Recognition 2018: 2851-2856. DOI: 10.1109/ICPR.2018.8546018. 
       - Coliban RM, Marincas M, Hatfaludi C, Ivanovici M. Linear  and non-linear models for remotely-sensed hyperspectral image visualization.  Remote Sens 2020; 12(15): 2479. DOI: 10.3390/rs12152479. 
       - Kang X, Duan P, Li S, Benediktsson JA. Decolorization-based  hyperspectral image visualization. IEEE Trans Geosci Remote Sens 2018; 56(8):  4346-4360. DOI: 10.1109/TGRS.2018.2815588. 
       - Gabarda S, Cristóbal G. Quality evaluation of blurred  and noisy images through local entropy histograms. Proc SPIE 2007; 6592:  659214. DOI: 10.1117/12.721952. 
       - Tang R, Liu H, Wei J, Tang W. Supervised learning with  convolutional neural networks for hyperspectral visualization. Remote Sens Lett  2020; 11(4): 363-372. DOI: 10.1080/2150704X.2020.1717014. 
       - Sowmya V, Govind D, Soman KP. Significance of incorporating  chrominance information for effective color-to-grayscale image conversion. Signal  Image Video Process 2017; 11(1): 129-136. DOI: 10.1007/s11760-016-0911-8. 
       - Zhao H, Zhang H, Jin X. Efficient image decolorization  with a multimodal contrast-preserving measure. Comput Graph 2018; 70: 251-260.  DOI: 10.1016/j.cag.2017.07.009. 
       - Zhang X, Liu S. Contrast preserving image decolorization  combining global features and local semantic features. Vis  Comput 2018; 34(6): 1099-1108. 
       - Ĉadík M. Perceptual evaluation of color-to-grayscale image conversions. Comput Graph Forum 2008; 27(7): 1745-1754.  DOI: 10.1111/j.1467-8659.2008.01319.x. 
       - McLaren K. XIII–The development of the CIE 1976 (L* a*  b*) uniform colour space and colour-difference formula. J Soc Dye Colour 1976; 92(9): 338-341. DOI:  10.1111/j.1478-4408.1976.tb03301.x. 
       - Van der Horst GJC,  Bouman MA. Spatiotemporal chromaticity discrimination. J Opt Soc Am 1969; 59(11):  1482-1488. DOI: 10.1364/JOSA.59.001482. 
       - Kendall MG. Rank correlation methods.  London: Charles  Griffin and Co Ltd; 1948. 
       - Grundland M, Dodgson NA. Decolorize:  Fast, contrast enhancing, color to grayscale conversion. Pattern Recognit 2007;  40(11): 2891-2896. DOI: 10.1016/j.patcog.2006.11.003. 
       - Gooch AA, Olsen SC,  Tumblin JE, Gooch BS. Color2gray: salience-preserving color removal. ACM Trans  Graph 2005; 24(3): 634-639. DOI: 10.1145/1073204.1073241. 
       - Smith K, Landes PE,  Thollot J, Myszkowski K. Apparent greyscale: A simple and fast conversion to perceptually  accurate images and video. Comput Graph Forum 2008; 27(2): 193-200. DOI:  10.1111/j.1467-8659.2008.01116.x. 
       - Bala R, Braun KM. Color-to-grayscale  conversion to maintain discriminability. Proc SPIE 2003; 5293: 196-202. DOI:  10.1117/12.532192. 
       - Neumann L, Čadik M, Nemcsics A. An efficient perception-based  adaptive color to gray transformation. Proc Third Eurographics Conf on  Computational Aesthetics in Graphics, Visualization and Imaging 2007: 73-80. 
       - Rasche K, Geist R, Westall J. Detail  preserving reproduction of color images for monochromats and dichromats. IEEE  Comput Graph Appl 2005; 25(3): 22-30. DOI: 10.1109/MCG.2005.54.       
      
 - Thurstone LL. A law of comparative judgment. Psychol Rev 1927; 34(4): 273-286.  DOI: 10.1037/h0070288. 
        
        
       
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20