(46-3) 11 * << * >> * Русский * English * Содержание * Все выпуски
  
Towards a unified framework for identity documents analysis and recognition
  K.B. Bulatov 1,3, P.V. Bezmaternykh 1,3, D.P. Nikolaev 2,3, V.V. Arlazarov 1,3
1 Federal Research Center "Computer Science and Control" of RAS, Moscow, Russia;
    2 Institute for Information Transmission Problems of RAS (Kharkevich Institute), Moscow, Russia;
    3 Smart Engines Service LLC, Moscow, Russia
  PDF, 10 MB
DOI: 10.18287/2412-6179-CO-1024
Страницы: 436-454.
Язык статьи: English.
Аннотация:
  Identity documents  recognition is far beyond classical optical character recognition problems.  Automated ID document recognition systems are tasked not only with the  extraction of editable and transferable data but with performing identity  validation and preventing fraud, with an increasingly high cost of error. A  significant amount of research is directed to the creation of ID analysis  systems with a specific focus for a subset of document types, or a particular  mode of image acquisition, however, one of the challenges of the modern world  is an increasing demand for identity document recognition from a wide variety  of image sources, such as scans, photos, or video frames, as well as in a  variety of virtually uncontrolled capturing conditions. In this paper, we describe  the scope and context of identity document analysis and recognition problem and  its challenges; analyze the existing works on implementing ID document  recognition systems; and set a task to construct a unified framework for  identity document recognition, which would be applicable for different types of  image sources and capturing conditions, as well as scalable enough to support  large number of identity document types. The aim of the presented framework is  to serve as a basis for developing new methods and algorithms for ID document  recognition, as well as for far more heavy challenges of identity document  forensics, fully automated personal authentication and fraud prevention.
Ключевые слова:
optical character  recognition, document recognition, document analysis, identity documents,  recognition system, mobile recognition, video stream recognition.
Благодарности
This work was partially supported by the Russian Foundation for Basic Research (Project No. 18-29-03085 and 19-29-09055).
Citation:
Bulatov KB, Bezmaternykh PV, Nikolaev DP, Arlazarov VV. Towards a unified framework for identity documents analysis and recognition. Computer Optics 2022; 46(3): 436-454. DOI: 10.18287/2412-6179-CO-1024.
References:
  - Eikvil L. OCR – Optical  Character Recognition. 1993. Source: <https://www.nr.no/~eikvil/OCR.pdf>.
 
  - Doermann D, Tombre K,  eds. Handbook of document image processing and recognition. London: Springer; 2014. ISBN: 978-0-85729-858-4. 
   - International  Civil Aviation Organization. ICAO Doc 9303 – Machine readable travel documents.  Source: <https://www.icao.int/publications/pages/publication.aspx?docnum=9303>. 
   - Hartl  A, Arth C, Schmalstieg D. Real-time detection and recognition of  machine-readable zones with mobile devices. In Book: Braz J, Battiato S, Imai  F, eds. Proceedings of the 10th International Conference on Computer Vision  Theory and Applications. Volume 1: VISAPP. Berlin, Germany:  2015: 79-87. DOI: 10.5220/0005294700790087.
   - Avoine  G, Kalach K, Quisquater J-J. ePassport: Securing International contacts with  contactless chips. In Book: Tsudik G, ed. Financial cryptography and data  security. Berlin, Heidelberg: Springer; 2008: 141-155. DOI:  10.1007/978-3-540-85230-8_11.
   - Buchmann  N, Rathgeb C, Wagner J, Busch C, Baier H. A preliminary study on the  feasibility of storing fingerprint and iris image data in 2d-barcodes. 2016  International Conference of the Biometrics Special Interest Group (BIOSIG) 2016: 1-5. DOI:  10.1109/BIOSIG.2016.7736904.
   - Agrawal  H. Aadhaar enabled applications. 2015. Source: <https://darpg.gov.in/sites/default/files/Aadhaar.pptx>. 
   - ISO/IEC  7810:2003: Identification cards – Physical characteristics. 2003. Source: <https://www.iso.org/standard/31432.html>. 
   - Council  of the European Union. PRADO – Public Register of Authentic identity and travel  Documents Online. Source: <https://www.consilium.europa.eu/prado/en/prado-start-page.html>. 
   - American  Association of Motor Vehicle Administrators. AAMVA DL/ID card design standard  (CDS). Source: <https://www.aamva.org/DL-ID-Card-Design-Standard>. 
   - International  Civil Aviation Organization. Traveller identification programme – ID management  solutions for more secure travel documents. Source:         <https://www.icao.int/security/FAL/TRIP/Pages/default.aspx>. 
   - Global  coverage for identity verification. Source: <https://www.jumio.com/global-coverage>. 
   - Onfido.  Supported documents. Source: <https://onfido.com/supported-documents>. 
   - Keesing  Technologies. Unrivaled coverage of international ID documents. Source: <https://www.keesingtechnologies.com/documentchecker/id-documents>. 
   - Llados  J, Lumbreras F, Chapaprieta V, Queralt J. ICAR: Identity card automatic reader.  Proc Sixth Int Conf on Document Analysis and Recognition 2001: 470-474. DOI:  10.1109/ICDAR.2001.953834.
   - Mollah  AF, Majumder N, Basu S, Nasipuri M. Design of an optical character recognition  system for camera-based handheld devices. Int J Comput Sci Appl 2011; 8(4):  283-289.
   - Ryan  M, Hanafiah N. An examination of character recognition on ID card using  template matching approach. Procedia Computer Science 2015; 59: 520-529. DOI:  10.1016/j.procs.2015.07.534.
   - Pratama MO, Satyawan W, Fajar B, Fikri R,  Hamzah H. Indonesian id card  recognition using convolutional neural networks. 5th International Conference  on Electrical Engineering, Computer Science and Informatics (EECSI) 2018:  178-181. DOI: 10.1109/EECSI.2018.8752769.
   - Satyawan  W, Pratama MO, Jannati R, Muhammad G, Fajar B, Hamzah H, Fikri R, Kristian K.  Citizen id card detection using  image processing and optical character recognition. J Phys Conf Ser 2019; 1235:  012049. DOI: 10.1088/1742-6596/1235/1/012049.
   - Smith  R. An overview of the Tesseract OCR engine. Ninth Int Conf on Document Analysis  and Recognition (ICDAR 2007) 2007; 2: 629-633. DOI: 10.1109/ICDAR.2007.4376991.
   - Attivissimo  F, Giaquinto N, Scarpetta M, Spadavecchia M. An  automatic reader of identity documents. IEEE International Conference on  Systems, Man and Cybernetics (SMC) 2019: 3525-3530. DOI:  10.1109/SMC.2019.8914438.
   - Viet  HT, Hieu Dang Q, Vu TA. A  robust end-to-end information extraction system for vietnamese identity cards.  6th NAFOSTED Conf on Information and Computer Science (NICS) 2019: 483-488.  DOI: 10.1109/NICS48868.2019.9023853.
   - Thanh  TNT, Trong KN. A method for segmentation of vietnamese identification card text  fields. Int J Adv Comput Sci Appl 2019; 10(10): 415-421. DOI:  10.14569/IJACSA.2019.0101057.
   - Sandler  M, Howard A, Zhu M, Zhmoginov A, Chen L. Mobilenetv2: Inverted residuals and  linear bottlenecks. 2018 IEEE/CVF Conf on Computer Vision and Pattern  Recognition 2018: 4510-4520. DOI: 10.1109/CVPR.2018.00474.
   - Guo  Q, Deng Y. Attention OCR. 2017. Source: <https://github.com/da03/Attention-OCR>. 
   - Xu  J, Wu X. A system to localize and recognize texts in oriented id card images. 2018 IEEE Int Conf on  Progress in Informatics and Computing (PIC) 2018: 149-153. DOI: 10.1109/PIC.2018.8706303.
   - Wu  X, Xu J, Wang J, Li Y, Li W, Guo Y. Identity authentication on mobile devices  using face verification and id image recognition. Procedia Computer Science  2019; 162: 932-939. DOI: 10.1016/j.procs.2019.12.070.
   - Fang  X, Fu X, Xu X. Id card identification system based on image recognition. 2017  12th IEEE Conf on Industrial Electronics and Applications (ICIEA) 2017:  1488-1492. DOI: 10.1109/ICIEA.2017.8283074.
   - Castelblanco  A, Solano J, Lopez C, Rivera E, Tengana L, Ochoa M. Machine learning techniques  for identity document verification in uncontrolled environments: A case study.  In Book: Mora KMF,       Marín JA, Cerda J, Carrasco-Ochoa JA, José Martínez-Trinidad  JF, Olvera-López JA, eds. MCPR 2020: Pattern Recognition. Cham, Switzerland:  Springer Nature; 2020: 271-281. DOI: 10.1007/978-3-030-49076-8_26.
   - Arlazarov  VV, Bulatov K, Chernov T, Arlazarov VL. MIDV-500: a dataset for identity  document analysis and recognition on mobile devices in video stream. Computer  Optics 2019; 43(5): 818-824. DOI: 10.18287/2412-6179-2019-43-5-818-824.
   - Bulatov  K, Matalov D, Arlazarov V. MIDV-2019: challenges of the modern mobile-based  document OCR. Proc SPIE 2019; 11433: 114332N. DOI: 10.1117/12.2558438.
   - Skoryukina  N, Arlazarov V, Nikolaev D. Fast method of id documents location and type  identification for mobile and server application. 2019 Int Conf on Document  Analysis and Recognition (ICDAR) 2019: 850-857. DOI: 10.1109/ICDAR.2019.00141.
   - de  Sá Soares Á, das Neves Junior R, Bezerra B. BID Dataset: a challenge dataset  for document processing tasks. Anais Estendidos do XXXIII Conference on  Graphics, Patterns and Images 2020: 143-146. DOI:  10.5753/sibgrapi.est.2020.12997.
   - Ngoc  MOV, Fabrizio J, Géraud T. Saliency-based detection of identy documents  captured by smartphones. 13th IAPR International Workshop on Document Analysis  Systems (DAS) 2018: 387-392. DOI: 10.1109/DAS.2018.17.
   - Chazalon  J, Gomez-Krämer P, Burie J, Coustaty M, Eskenazi S, Luqman M, Nayef N, Rusiñol  M, Sidère N, Ogier J. SmartDoc 2017 video capture: Mobile document acquisition  in video mode. 14th IAPR International Conference on Document Analysis and  Recognition (ICDAR) 2017; 4: 11-16. DOI: 10.1109/ICDAR.2017.306.
   - Sencar  HT, Memon N. Overview of state-of-the-art in digital image forensics. In Book:  Bhattacharya BB, Sur-Kolay S, Nandy SC, Bagchi A, eds. Statistical science and  interdisciplinary research: Volume 3. Algorithms, architectures and information  systems security. Singapore:  World Scientific Publishing Co Pte Ltd; 2009: 325-347. DOI:  10.1142/9789812836243_0015.
   - Piva  A. An overview on image forensics. ISRN Signal Process 2013; 2013: 68-73. DOI:  10.1155/2013/496701.
   - Centeno AB, Terrades OR, Canet JL, Morales CC.  Identity document and banknote security forensics: a survey. arXiv preprint, 2019. Source: <https://arxiv.org/abs/1910.08993>.
   - Ferreira WD,  Ferreira CB, da Cruz Júnior G, Soares F. A review of digital image forensics.  Comput Electr Eng 2020; 85: 106685. DOI: 10.1016/j.compeleceng.2020.106685.
   - Council  of the European Union. PRADO Glossary – Technical terms related to security  features and to security documents in general (in alphabetical order) 2021.  Source: <https://www.consilium.europa.eu/prado/en/prado-glossary/prado-glossary.pdf>. 
   - Arlazarov  VV, Chernov TS, Nikolaev DP, Skoryukina   NS, Slavin OA. Method for  holographic elements detection in video stream. 2017, US Patent US10354142B2 of July 16,  2019. Source:    <https://patents.google.com/patent/US10354142B2/en>. 
   - Kunina IA, Aliev MA,  Arlazarov NV,  Polevoy DV. A method of fluorescent fibers detection on identity documents  under ultraviolet light. Proc SPIE 2020; 11433: 114330D. DOI:  10.1117/12.2558080.
   - Li  H, Wang S, Kot AC. Image recapture detection with convolutional and recurrent  neural networks. Electronic Imaging 2017; 2017(7): 87-91. DOI: 10.2352/ISSN.2470-1173.2017.7.MWSF-329.
   - Sun  Y, Shen X, Liu C, Zhao Y. Recaptured image forensics algorithm based on image  texture feature. Intern J Pattern Recognit Artif Intell 2020; 34(03): 2054011.  DOI: 10.1142/S0218001420540117.
   - Warbhe  AD, Dharaskar R, Thakare V. A scaling robust copy-paste tampering detection for  digital image forensics. Procedia Computer Science 2016; 79: 458-465. DOI:  10.1016/j.procs.2016.03.059.
   - Yusoff N,  Alamro L. Implementation of feature extraction algorithms for image tampering  detection. Int J Adv Comput Res 2019; 9(43): 197-211. DOI:  10.19101/IJACR.PID37.
   - Kumar  M, Rani A, Srivastava S. Image forensics based on lighting estimation. Int J  Image Graph 2019; 19(03): 1950014. DOI: 10.1142/S0219467819500141.
   - ISO  1073-2:1976: Alphanumeric character sets for optical recognition – Part 2:  Character set OCR-B – Shapes and dimensions of the printed image. International  Organization for Standardization; 1976. Source: <https://www.iso.org/standard/5568.html>. 
   - Starovoitov  V, Samal D, Sankur B. Matching of faces in camera images and document  photographs. IEEE Int Conf on Acoustics, Speech, and Signal Processing 2000; 4:  2349-2352. DOI: 10.1109/ICASSP.2000.859312.
   - Fysh  MC, Bindemann M. Forensic face matching: A review. In Book: Bindemann M, Megreya AM, eds. Face processing: Systems, disorders  and cultural differences. New York:  Nova Science Publishing Inc; 2017: 1-20.
   - Bulatov K,  Arlazarov VV, Chernov T, Slavin O, Nikolaev D. Smart IDReader: Document  recognition in video stream. 14th Int Conf on Document Analysis and Recognition  (ICDAR) 2017; 6: 39-44. DOI: 10.1109/ICDAR.2017.347.
   - Valentín  K, Wild P, Štolc S, Daubner F, Clabian M. Optical benchmarking of security  document readers for automated border control. Proc SPIE 2016; 9995: 999503.  DOI: 10.1117/12.2241169.
   - Fujitsu  fi-65F: Flatbed scanner for passports, ID cards. Spigraph catalogue, 2021.  Source: <http://www.spigraph.com/Scanners/Catalogue-scanner/Documents/Specifics/Fujitsu/fi-65F>. 
   - PS667  Simplex ID Card Scanner with AmbirScan. Ambir Technology. Source: <https://www.ambir.com/product/simplex-id-card-scanner-ambirscan-ps667-as>. 
   - Talwerdi  M. Apparatus and method for reading a document and printing a mark on the  document. 2018, Japan patent JP6314332B2 of July 4, 2017. Source:            <https://patents.google.com/patent/JP6314332B2/en>. 
   - Bocharov  NA, Limonova EE, Nikolaev DP, Paramonov   NB, Slavin OA, Usilin SA.  Automatized workplace for passport documents control. Pat RF of Invent N  RU 182557 U1 of August 22, 2018. Source: <https://yandex.ru/patents/doc/RU182557U1_20180822/>. 
   - Volonkin  VM, Evstafjev EN, Nikonorov MV, Podoljskii AD, Stolyarov EV. Universal reader  of passport and visa documents. 2013, Pat RF of Invent N RU 127977 U1  of May 10, 2013. Source: <https://patents.google.com/patent/RU127977U1/en>. 
   - Arlazarov  VV, Zhukovskiy AE, Krivtsov VE, Nikolaev DP, Polevoy DV Analysis of the usage  specifics of stationary and small-scale mobile video cameras for documents  recognition [In Russian]. Information Technologies and Computing Systems  (ITiVS) 2014; 3: 71-81.
   - Li X,  Zhang B, Liao J, Sander PV. Document rectification and illumination correction using a patch-based  CNN. ACM Trans Graph 2019; 38(6): 168. DOI: 10.1145/3355089.3356563.
   - Asad  F, Ul-Hasan A, Shafait F, Dengel A. High performance OCR for camera-captured  blurred documents with LSTM networks. 12th IAPR Workshop on Document Analysis  Systems (DAS) 2016: 7-12. DOI: 10.1109/DAS.2016.69.
   - Chernov  TS, Razumnuy NP, Kozharinov AS, Nikolaev DP, Arlazarov VV. Image quality  assessment for video stream recognition systems. Proc SPIE 2017; 10696:  106961U. DOI: 10.1117/12.2309628.
   - Nunnagoppula  G, Deepak KS,  Harikrishna G, Rai N, Krishna PR, Vesdapunt N. Automatic blur detection in  mobile captured document images: Towards quality check in mobile based document  imaging applications. IEEE Second Int Conf on Image Information Processing  (ICIIP-2013) 2013: 299-304. DOI: 10.1109/ICIIP.2013.6707602.
   - Miao  L, Peng S. Perspective rectification of document images based on morphology.  2006 Int Conf on Computational Intelligence and Security 2006; 2: 1805-1808.  DOI: 10.1109/ICCIAS.2006.295374.
   - Takezawa  Y, Hasegawa M, Tabbone S. Robust perspective rectification of camera-captured  document images. 14th IAPR Int Conf on Document Analysis and Recognition  (ICDAR) 2017; 06: 27-32. DOI: 10.1109/ICDAR.2017.345.
   - Kunina  I, Gladilin S, Nikolaev D. Blind radial distortion compensation in a single image  using fast Hough transform. Computer Optics 2016; 40(3): 395-403. DOI:  10.18287/2412-6179-2016-40-3-395-403.
   - Zhukovsky  A, Nikolaev D, Arlazarov V, Postnikov V, Polevoy D, Skoryukina N, Chernov T,  Shemiakina J, Mukovozov A, Konovalenko I, Povolotsky M. Segments graph-based  approach for document capture in a smartphone video stream. 14th IAPR Int Conf  on Document Analysis and Recognition (ICDAR) 2017; 01: 337-342. DOI:  10.1109/ICDAR.2017.63.
   - Haris  M, Shakhnarovich G, Ukita N. Recurrent back-projection network for video  super-resolution. IEEE/CVF Conf on Computer Vision and Pattern Recognition  (CVPR) 2019: 3892-3901. DOI: 10.1109/CVPR.2019.00402.
   - Petrova  O, Bulatov K, Arlazarov VV, Arlazarov VL. Weighted combination of per-frame  recognition results for text recognition in a video stream. Computer Optics  2021; 45(1): 77-89. DOI: 10.18287/2412-6179-CO-795.
   - Awal  AM, Ghanmi N, Sicre R, Furon T. Complex document classification and  localization application on identity document images. 14th IAPR Int Conf on  Document Analysis and Recognition (ICDAR) 2017; 01: 426-431, DOI:  10.1109/ICDAR.2017.77.
   - Augereau  O, Journet N, Domenger J-P. Semi-structured document image matching and  recognition. Proc SPIE 2013; 8658: 865804. DOI: 10.1117/12.2003911.
   - Slavin  OA. Using special text points in the recognition of documents. In Book: Kravets  AG, Bolshakov AA, Shcherbakov MV. Cyber-physical systems: Advances in design  & modelling. Cham: Springer International Publishing; 2020: 43-53. DOI:  10.1007/978-3-030-32579-4_4.
   - Minkina  A, Nikolaev D, Usilin S, Kozyrev V. Generalization of the Viola-Jones method as  a decision tree of strong classifiers for real-time object recognition in video  stream. Proc SPIE 2015; 9445: 944517. DOI: 10.1117/12.2180941.
   - Puybareau  E, Geraud T. Real-time document detection in smartphone videos. 25th IEEE  International Conference on Image Processing (ICIP) 2018: 1498-1502. DOI:  10.1109/ICIP.2018.8451533.
   - das  Neves Junior RB, Lima E, Bezerra BL, Zanchettin C, Toselli AH. HU-PageScan: a  fully convolutional neural network for document page crop. IET Image Process  2020; 14: 3890-3898. DOI: 10.1049/iet-ipr.2020.0532.
   - Loc  CV, Cao De T, Burie JC, Ogier JM. Content region detection and feature  adjustment for securing genuine documents. 12th Int Conf on Knowledge and  Systems Engineering (KSE) 2020: 103-108. DOI: 10.1109/KSE50997.2020.9287382.
   - Forman  S, Samanthula BK. Secure similar document detection: Optimized computation  using the Jaccard coefficient. IEEE 4th Int Conf on Big Data Security on Cloud,  IEEE Int Conf on High Performance and Smart Computing, (HPSC) and IEEE Int Conf  on Intelligent Data and Security (IDS) 2018: 1-4. DOI:  10.1109/BDS/HPSC/IDS18.2018.00015.
   - Skoryukina  N, Nikolaev DP, Sheshkus A, Polevoy D. Real time rectangular document detection  on mobile devices. Proc SPIE 2015; 9445: 94452A. DOI: 10.1117/12.2181377.
   - Bulatov  K, Razumnyi N, Arlazarov VV. On optimal stopping strategies for text  recognition in a video stream as an application of a monotone sequential  decision model. Int J Doc Anal Recognit 2019; 22(3): 303-314. DOI:  10.1007/s10032-019-00333-0.
   - Povolotskiy  MA, Tropin DV. Dynamic programming approach to template-based OCR. Proc SPIE  2019; 11041: 110411T. DOI: 10.1117/12.2522974.
   - Zhou  X, Yao C, Wen H, Wang Y, Zhou S, He W, Liang J. EAST: An efficient and accurate  scene text detector. IEEE Conf on Computer Vision and Pattern Recognition  (CVPR) 2017: 2642-2651. DOI: 10.1109/CVPR.2017.283.
   - Wolf  C, Jolion J-M. Object count/area graphs for the evaluation of object detection  and segmentation algorithms. Int J Doc Anal Recognit 2006; 8(4): 280-296.
   - Lee  CY, Baek Y, Lee H. TedEval: A fair evaluation metric for scene text detectors.  arXiv preprint, 2019. Source: <https://arxiv.org/abs/1907.01227>.
   - Baek  Y, Nam D, Park S, Lee J, Shin S, Baek J, Lee CY, Lee H. CLEval: Character-level  evaluation for text detection and recognition tasks. arXiv preprint, 2020.  Source: <https://arxiv.org/abs/2006.06244>.
   - Bezmaternykh  PV, Nikolaev DP, Arlazarov VL. Textual blocks rectification method based on  fast Hough transform analysis in identity documents recognition. Proc SPIE  2018; 10696: 1069606. DOI: 10.1117/12.2310162.
   - Chernyshova  YS, Sheshkus AV, Arlazarov VV. Two-step CNN framework for text line recognition  in camera-captured images. IEEE Access 2020; 8: 32587-32600. DOI: 10.1109/ACCESS.2020.2974051.
   - Bulatov  KB. A method to reduce errors of string recognition based on combination of  several recognition results with per-character alternatives. Bulletin of the  South Ural State University, Series: Mathematical  Modelling, Programming and Computer Software 2019; 12(3): 74-88. DOI:  10.14529/mmp190307.
   - Yujian  L, Bo L. A normalized Levenshtein distance metric. IEEE Trans Pattern Anal Mach  Intell 2007; 29(6): 1091-1095. DOI: 10.1109/TPAMI.2007.1078.
   - Fiscus  JG. A post-processing system to yield reduced word error rates: Recognizer  Output Voting Error Reduction (ROVER). IEEE Workshop on Automatic Speech Recognition  and Understanding 1997: 347-354. DOI: 10.1109/ASRU.1997.659110.
   - Arlazarov  VV, Bulatov K, Manzhikov T, Slavin O, Janiszewski I. Method of determining the  necessary number of observations for video stream documents recognition. Proc  SPIE 2018; 10696: 106961X. DOI: 10.1117/12.2310132.
   - Tolstov  I, Martynov S, Farsobina V, Bulatov K. A modification of a stopping method for  text recognition in a video stream with best frame selection. Proc SPIE 2021;  11605: 116051M. DOI: 10.1117/12.2586928.
   - Polevoy  DV, Aliev MA, Nikolaev DP. Choosing the best image of the document owner’s  photograph in the video stream on the mobile device. Proc SPIE 2021; 11605: 116050F. DOI:  10.1117/12.2586939.
   - Shi  W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z.  Real-time single image and video super-resolution using an efficient sub-pixel  convolutional neural network. IEEE Conf on Computer Vision and Pattern  Recognition (CVPR) 2016: 1874-1883. DOI: 10.1109/CVPR.2016.207.
   - Ren  H, El-Khamy M, Lee J. Video super resolution based on deep convolution neural  network with two-stage motion compensation. IEEE Int Conf on Multimedia Expo  Workshops (ICMEW) 2018: 1-6. DOI: 10.1109/ICMEW.2018.8551569.
   - Mei  J, Islam A, Wu Y, Moh’d A, Milios EE. Statistical learning for OCR text  correction. arXiv preprint, 2016. Source: <https://arxiv.org/abs/1611.06950>.
   - Nguyen  T, Jatowt A, Coustaty M, Nguyen N, Doucet A. Post-OCR error detection by  generating plausible candidates. Int Conf on Document Analysis and Recognition  (ICDAR) 2019: 876-881. DOI: 10.1109/ICDAR.2019.00145.
   - Llobet  R, Cerdan-Navarro J, Perez-Cortes J, Arlandis J. OCR post-processing using  weighted finite-state transducers. 20th Int Conf on Pattern Recognition 2010:  2021-2024. DOI: 10.1109/ICPR.2010.498.
   - Bulatov  KB, Nikolaev DP, Postnikov VV. Universal algorithm for post-processing of  recognition results based on validation grammars [In Russian]. Trudy ISA RAN  2015; 65(4): 68-73.       
  
 - Petrova O, Bulatov K. Methods of machine-readable  zone recognition results post-processing. Proc SPIE 2019; 11041: 110411H. DOI:  10.1117/12.2522792.  
 
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20