(46-4) 05 * << * >> * Русский * English * Содержание * Все выпуски

Пространственно-временные характеристики четырёхволнового преобразователя излучения с учётом поля тяжести Земли, действующего на растворённые в прозрачной жидкости наночастицы
М.В. Савельев 1, А.Д. Ремзов 1

Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34

 PDF, 1186 kB

DOI: 10.18287/2412-6179-CO-1109

Страницы: 547-554.

Аннотация:
Проведён теоретический анализ динамики пространственного спектра объектной волны при вырожденном четырёхволновом взаимодействии в прозрачном растворе наночастиц в классической схеме со встречными волнами накачки. Показано, что при распространении волн накачки ортогонально силе тяжести в модуле пространственного спектра объектной волны возникает провал, полуширина которого с течением времени немонотонно уменьшается, а с ростом радиуса наночастиц увеличивается в направлении силы тяжести. Существует оптимальное время, за которое полуширина провала в направлении силы тяжести достигает наименьшего значения. Это время монотонно убывает с ростом радиуса наночастиц, а также с уменьшением толщины раствора.

Ключевые слова:
четырёхволновой преобразователь излучения, поле тяжести Земли, прозрачный раствор наночастиц.

Цитирование:
Савельев, М.В. Пространственно-временные характеристики четырёхволнового преобразователя излучения с учётом поля тяжести Земли, действующего на растворённые в прозрачной жидкости наночастицы / М.В. Савельев, А.Д. Ремзов // Компьютерная оптика. – 2022. – Т. 46, № 4. – С. 547-554. – DOI: 10.18287/2412-6179-CO-1109.

Citation:
Savelyev MV, Remzov AD. Spatial and temporal characteristics of a four-wave radiation converter with due regard for Earth's gravity field acting on nanoparticles dissolved in a transparent liquid. Computer Optics 2022; 46(4): 547-554. DOI: 10.18287/2412-6179-CO-1109.

References:

  1. Xiang D, Wu J, Rottler J, Gordon R. Threshold for teraherz resonance of nanoparticles in water. Nano Lett 2016; 16(6): 3638-3641. DOI: 10.1021/acs.nanolett.6b00770.
  2. Melik-Gaykazyan EV. Silicon nanoparticles for nonlinear frequency conversion of mid-IR radiation. J Phys Conf Ser 2018; 1092: 012086. DOI: 10.1088/1742-6596/1092/1/012086.
  3. Lin Y-H, Lin G-R. Kelly sideband variation and self four-wave-mixing in femtosecond fiber soliton laser mode-locked by multiple exfoliated graphite nanoparticles. Laser Phys Lett 2013; 10(4): 045109. DOI: 10.1088/1612-2011/10/4/045109.
  4. Lan Y-Z. Excitonic effects on the linear and nonlinear optical properties of solid C60 fullerene, insights from many-body first-principles calculations. Carbon 2022; 188: 126-134. DOI: 10.1016/j.carbon.2021.11.038.
  5. Livashvili AI, Krishtop VV, Vinogradova PV, Karpets YuM, Efremenko VG, Syuy AV, Kuzmichev EN, Igumnov PV. Appearance of solitary wave particle concentration in nanofluids under a light field. Nanomaterials 2021; 11(5): 1291. DOI: 10.3390/nano11051291.
  6. Ivanov VI, Ovseychook OO, Myagotin AV. Holographic method of the nanoparticles diagnostics in a fluid. IOP Conf Ser Mater Sci Eng 2019; 510: 012027. DOI: 10.1088/1757-899X/510/1/012027.
  7. Kosionis S, Paspalakis E. Four-wave mixing in asymmetric double quantum dot molecule-metal nanoparticle assembles. Mater Proc 2021; 4(1): 89. DOI: 10.3390/IOCN2020-07843.
  8. Tsuchiya T, Egami C. Degenerate four-wave mixing in phycoerythrin dye-doped nanoparticles. Int J Opt 2021; 2021: 5568693. DOI: 10.1155/2021/5568693.
  9. Ramya E, Jyothi L, Desai NR. Nonlinear optical properties and cytotoxicity studies of fruit extract synthesized silver and gold nanostructures. Int J Nanosci 2021; 20(4): 2150031. DOI: 10.1142/S0219581X21500319.
  10. Lukin VP. Adaptive optics in the formation of optical beams and images. Physics-Uspekhi 2014; 57(6): 556-592. DOI: 10.3367/UFNe.0184.201406b.0599.
  11. Masia F, Moreels I, Hens Z, Langbein W, Borri P. Four-wave-mixing imaging and carrier dynamics of PbS colloidal quantum dots. Phys Rev B 2010; 82(15): 155302. DOI: 10.1103/PhysRevB.82.155302.
  12. Cong L, Geng Y, Tian Y, Huo Z, Huang D, Liang C, Xu W, Wang Y, Xu S. Plasmon-enhanced four-wave mixing imaging for microdroplet-based single-cell analysis. Anal Chem 2020; 92(14): 9459-9464. DOI: 10.1021/acs.analchem.0c00816.
  13. Giannakopoulou N, Williams JB, Moody PR, Sayers EJ, Magnusson JP, Pope I, Payne L, Alexander C, Jones AT, Langbein W, Watson P, Borri P. Four-wave-mixing spectroscopy reveals non-colocalisation between gold nanoparticles and fluorophore conjugates inside cells. Nanoscale 2020; 12(7): 4622-4635. DOI: 10.1039/c9nr08512b.
  14. Wang J, Zhang X, Deng J, Hu X, Hu Y, Mao J, Ma M, Gao Y, Wei Y, Li F, Wang Z, Liu X, Xu J, Ren L. Simplified near-degenerate four-wave-mixing microscopy. Molecules 2021; 26(17): 5178. DOI: 10.3390/molecules26175178.
  15. Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI: 10.18287/2412-6179-CO-1011.
  16. Ivakhnik VV, Savelyev MV. Transient four-wave mixing in a transparent two-component medium. Computer Optics 2018; 42(2): 227-235. DOI: 10.18287/2412-6179-2018-42-2-227-235.
  17. Khe VK, Ivanov VI. Sedimentation of particles by the light pressure in nanosuspension. Proc SPIE 2017; 10466: 104664K. DOI: 10.1117/12.2288774.
  18. Cherepanov IN. Impurity redistribution in colloid mixtures. Tech Phys 2018; 63(12): 1703-1710. DOI: 10.1134/S1063784218120034.
  19. Croccolo F, Garcia-Fernández L, Bataller H, Vailati A, de Zárate JMO. Propagating modes in a binary liquid mixtures under thermal stress. Phys Rev E 2019; 99(1): 012602. DOI: 10.1103/PhysRevE.99.012602.
  20. Savelyev MV, Ivakhnik VV. Spatial selectivity of the four-wave radiation converter with allowance for gravity acting on nanoparticles dissolved in a transparent liquid. Radiophys Quantum Electron 2021; 63(8): 625-633. DOI: 10.1007/s11141-021-10085-9.
  21. Remzov AD, Savelyev MV. Counterpropagating four-wave mixing in a transparent suspension of nanoparticles in the Earth’s gravity field. Bull Russ Acad Sci Phys 2021; 85(12): 1415-1419. DOI: 10.3103/S1062873821120261.
  22. Livashvili AI, Kostina GV, Yakunina MI. Temperature dynamics of a transparent nanoliquid acted on by a periodic light field. J Opt Technol 2013; 80(2): 124-126. DOI: 10.1364/JOT.80.000124.
  23. Arandian A, Karimzadeh R, Faizabadi SY. The effect of laser wavelength and concentration on thermal nonlinear refractive index of graphene suspensions. Nano 2015; 10(4): 1550053. DOI: 10.1142/S1793292015500538.
  24. Afanas’ev AA, Gaida LS, Kurochkin YuA, Novitsky DV, Svistun ACh. Concentration nonlinearity of a suspension of a gradient force in a periodically modulated laser field. Quantum Electron 2016; 46(10): 891-894. DOI: 10.1070/QEL16196.
  25. Gerakis AA, Yeh Y-W, Shneider MN, Mitrani JM, Stratton BC, Raitses Ye. Four-wave mixing approach to in situ detection of nanoparticles. Phys Rev Appl 2018; 9(1): 014031. DOI: 10.1103/PhysRevApplied.9.014031.
  26. Larsson C, Kumar S. Nonuniformities in miscible two-layer two-component thin liquid films. Phys Rev Fluids 2021; 6(3): 034004. DOI: 10.1103/PhysRevFluids.6.034004.
  27. Voyutskii SS, ed. Course of colloidal chemistry [In Russian]. Moscow: "Khimiya" Publisher; 1975.
  28. Behera SK, Saha D, Gadige P, Bandyopadhyay R. Effects of polydispersity on the glass transition dynamics of aqueous suspensions of soft spherical colloidal particles. Phys Rev Mater 2017; 1(5): 055603. DOI: 10.1103/PhysRevMaterials.1.055603.
  29. Ivakhnik VV, Savelyev MV. Influence of the pump wave rotation and divergence on the spatial selectivity of a four-wave radiation converter in a transparent two-component medium. Computer Optics 2016; 40(1): 19-25. DOI: 10.18287/2412-6179-2016-40-1-19-25.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20