(46-4) 07 * << * >> * Русский * English * Содержание * Все выпуски
  
Genetic algorithm for optimizing Bragg and hybrid metal-dielectric reflectors
  E.I. Girshova 1,2, A.V. Ogurtcov 1, A.V. Belonovski 1,2, K.M. Morozov 1,2, M.A. Kaliteevski 1,2
1 Alferov University, 8/3 Khlopina Str., St. Petersburg, 194021, Russia;
    2 ITMO University, 49 Kronverksky Pr., St. Petersburg, 197101, Russia
  
 PDF, 952 kB
  PDF, 952 kB
DOI: 10.18287/2412-6179-CO-1128
Страницы: 561-566.
Язык статьи: English.
Аннотация:
Highly  efficient reflectors are in demand in the rapidly developing optoelectronics.  At the moment, distributed Bragg reflectors made of semiconductor materials are  mainly used in this capacity. A lot of time and financial resources are spent  on their production. Reducing the thickness of the reflector while maintaining  its reflectivity would make these devices more affordable and extend their  lifetime by reducing thermal noise. With the help of genetic optimization  algorithms, the structures of multilayer semiconductor and combined  metal-semiconductor reflectors were obtained, having a smaller thickness and  equal optical characteristics than those of classical analogues. In particular,  a 29% reduction in the thickness of the silicon/silica  Bragg reflector was achieved without compromising performance.
Ключевые слова:
distributed Bragg reflector, multilayered structures, genetic algorithm, hybrid metal-dielectric mirror.
Благодарности
The work has been supported by the Russian Science Foundation 21-12-00304. This work is financially supported by the Government of the Russian Federation (The federal academic leadership program Priority 2030).
Citation:
Girshova EI, Ogurtcov AV, Belonovski AV, Morozov KM, Kaliteevski MA. Genetic algorithm for optimizing Bragg and hybrid metal-dielectric reflectors. Computer Optics 2022; 46(4): 561-566. DOI: 10.18287/2412-6179-CO-1128.
References:
  - Liu  A, Wolf P, Lott JA, Bimberg D. Vertical-cavity surface-emitting lasers for data  communication and sensing. Photon Res 2019; 7(23): 121-136. DOI:  10.1364/PRJ.7.000121.
- Bielecki Z, Stacewicz T, Wojtas G, Mikołajczyk J, Szabra D, Prokopiuk A.  Selected optoelectronic sensors in medical applications. Opto-Electron Rev  2018; 1(1): 122-133. DOI: 10.1016/j.opelre.2018.02.007. 
 
- Sun  C, Ding Y, Li Zh, Qi W, Yu Yu. Key multimode silicon photonic devices inspired  by geometrical optics. ACS Photonics 2020; 7(8): 2037-2045. 
 
- Wang Sh. Principles of distributed  feedback and distributed Bragg-reflector lasers. IEEE J Quantum Electron 1974;  10(4): 413-427. DOI: 10.1109/JQE.1974.1068152.
 
- Nunn W, Truttmann  TK, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide  semiconductors. J Mater Res 2021; 36: 4846-4864. DOI:  10.1557/s43578-021-00377-1.
 
- Won PC, Yi L, Wei Z, Leng JS, Williams JAR. Distributed  temperature measurement using a Fabry–Perot effect based chirped fiber Bragg  grating. Opt Commun 2006; 265(2): 494-499. DOI: 10.1016/j.optcom.2006.04.024. 
 
- Flaminio R,  Franc J, Michel C, Morgado N, Pinard L, Sassolas B. A study of coating  mechanical and optical losses in view of reducing mirror thermal noise in  gravitational wave detectors. Class Quantum Grav 2008; 27: 084030.
 
- Agresti  J, Castaldi G, DeSalvo R, Galdi V, Pierro V, Pinto IM. Optimized multilayer  dielectric mirror coatings for gravitational wave interferometers. Proc SPIE  2006; 6286: 628608. DOI: 10.1117/12.678977.
 
- Pierro V, Fiumara V, Chiadini F,  Granata V,  Durante O, Neilson J, Di  Giorgio C, Fittipaldi R, Carapella G, Bobba F, Principe M, Pinto IM. Ternary  quarter wavelength coatings for gravitational wave detector mirrors: Design optimization  via exhaustive search. Phys Rev Research 2021; 3(2): 023172. DOI:  10.1103/PhysRevResearch.3.023172.
 
- Kim H, Kaya M,  Hajimirza Sh. Broadband solar distributed Bragg reflector design using  numerical optimization. Sol Energy 2021; 221: 384-392. DOI:  10.1016/j.solener.2021.04.045.
 
- Tikhonravov AV,  Trubetskov MK, DeBell GW. Application of the needle optimization technique to  the design of optical coatings. Appl Opt 1996; 35: 5493-5508.
 
- Mai HH. Designing  multilayer dielectric filter based on TiO2/SiO2 for  fluorescence microscopy applications. Computer Optics 2020; 44(2): 209-213.  DOI: 10.18287/2412-6179-CO-618.
 
- Pervak V, Krausz  F, Apolonski A. Dispersion control over the ultraviolet-visible-near-infrared  spectral range with HfO2/SiO2-chirped dielectric multilayers. Opt Lett 2007;  32: 1183-1185.
 
- Pervak V, Teisset  C, Sugita A, Naumov S, Krausz F, Apolonski A. High-dispersive mirrors for  femtosecond lasers. Opt Express 2008; 16: 10220-10233.
 
- Kharitonova EA,  Girshova EI, Belonovskii AV, et al. Optical and thermal properties of a hybrid  metal–dielectric reflector. Tech Phys Lett 2021; 47: 61-64. DOI:  10.1134/S1063785021010223.
 
- Mehta  K, Detchprohm K, Park YU, Liu Y-S, Moreno O, Alugubelli OR, Wang S, Ponce FA,  Shen S, Dupuis RD, Yoder PD. High reflectivity hybrid AlGaN/Silver distributed  bragg reflectors for use in the UV-visible spectrum. IEEE J Quantum Electron  2017; 53(6): 2100208. DOI: 10.1109/JQE.2017.2766288. 
 
- Sarzała R, Marciniak M, Czyszanowski T. Thermal  properties of GaN-based semiconductor-metal subwavelength grating VCSELs and  novel current injection scheme. J Phys D: Appl Phys 2018; 51(28): 285102. DOI:  10.1088/1361-6463/aac85a. 
 
- Deppe DG, Li M, Yang X, Bayat M.  Advanced VCSEL technology: Self-heating and intrinsic modulation response. IEEE  J Quantum Electron 2018; 54(3): 1-9. doi:  10.1109/JQE.2018.2826718.
 
- Kuchta DM, Rylyakov AV, Schow CL, Proesel JE, Baks CW,  Westbergh P, Gustavsson JV, Larsson AA. 50 Gb/s NRZ modulated 850 nm VCSEL  transmitter operating error free to 90 °C. J Lightw Technol 2015; 33: 802-810. 
 
- Toanen V,  Symonds C, Benoit JM, Gassenq A, Lemaltre A, Bellessa J. Room-temperature  lasing in a low-loss tamm plasmon  cavity. ACS Photonics 2020; 7(11): 2952-2957. DOI:  10.1021/acsphotonics.0c00781.
 
- Verly PG.  Optimum phase for rugate filter synthesis by Fourier transforms. Appl Opt 2011;  50: C124-C128.
 
- Zhang G, Billingsley DC,  Shoemaker D. Advanced LIGO coating research, in optical interference coatings.  OSA Technical Digest Series (Optical Society of America) 2004: FB5.
 
- Juarez AA. 25 Gb/s transmission over 1-km graded-index  single-mode fiber using 910 nm SM VCSEL. 2020 Optical Fiber Communications  Conference and Exhibition (OFC) 2020: 1-3. 
 
- Fesenko VI. Aperiodic  birefringent photonic structures based on Kolakoski sequence. Waves Random  Complex Media 2014; 24(2): 174-190. DOI: 10.1080/17455030.2014.890764. 
 
- Kaliteevski MA, Nikolaev VV, Abram  RA. Bandgap structure of optical Fibonacci lattices after light diffraction.  Opt Spectrosc 2001; 91: 109-118. DOI: 10.1134/1.1388332.
 
- Pereira S, LaRochelle S. Field  profiles and spectral properties of chirped Bragg grating Fabry-Perot  interferometers. Opt Express 2005; 13: 1906-1915.
 
- Rincón-Llorente G, Heras I, Rodríguez EG, Schumann E,  Krause M, Escobar-Galindo R. On the effect of thin film growth mechanisms on  the specular reflectance of aluminium thin films deposited via filtered  cathodic vacuum arc. Coatings 2018; 8(9): 321. DOI: 10.3390/coatings8090321.     
    
- Kavokin AV, Kaliteevski MA. Light-absorption effect  on Bragg interference in multilayer semiconductor heterostructures. J Appl Phys  1997; 79: 595-598. DOI: 10.1063/1.360801.
      
      
    
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20