(46-6) 06 * << * >> * Русский * English * Содержание * Все выпуски

Компоновка и расчёт двухдиапазонного атермального рефракционно-линзового ИК-объектива
Г.И. Грейсух 1, Е.Г. Ежов 1, И.А. Левин 2

Пензенский государственный университет архитектуры и строительства, Пенза, Россия,
440028, Россия, г. Пенза, ул. Титова, д. 28;
ПАО «Красногорский завод им. С.А. Зверева», Красногорск, Россия,
143400, Россия, г. Красногорск, ул. Речная 8

 PDF, 805 kB

DOI: 10.18287/2412-6179-CO-1167

Страницы: 892-898.

Аннотация:
Показана возможность достижения высоких оптических характеристик и пассивной атермализации у простых по конструкции двухдиапазонных ИК-объективов при использовании в их оптических схемах рефракционных линз, выполненных из халькогенидных стекол. Даны рекомендации по компоновке оптической схемы и по получению исходных конструктивных параметров для последующей оптимизации. Достоверность и эффективность рекомендаций подтверждена результатами расчёта сверхсветосильного рефракционно-линзового объектива, работающего с излучением средне- и длинноволнового ИК-поддиапазонов и формирующего высококачественное полихроматическое изображение на матрице неохлаждаемого микроболометра в интервале рабочих температур от – 40°C до + 60°C.

Ключевые слова:
рефракционно-линзовый ИК-объектив, пассивная атермализация, ахроматизация, компоновка оптической схемы, оптические характеристики.

Благодарности
Исследование выполнено за счет гранта Российского научного фонда (проект № 20-19-00081).

Цитирование:
Грейсух, Г.И. Компоновка и расчёт двухдиапазонного атермального рефракционно-линзового ИК-объектива / Г.И. Грейсух, Е.Г. Ежов, И.А. Левин // Компьютерная оптика. – 2022. – Т. 46, № 6. – С. 892-898. – DOI: 10.18287/2412-6179-CO-1167.

Citation:
Greisukh GI, Ezhov EG, Levin IA. Designing dual-band athermal refractive-lens IR objectives. Computer Optics 2022; 46(6): 892-898. DOI: 10.18287/2412-6179-CO-1167.

References:

  1. Tarasov VV, Yakushenkov YuG. Dual and multispectral optical-electronic systems with matrix sensors [In Russian]. Moscow: "Logos" Publisher; 2007. ISBN: 5-98704-198-8.
  2. Medvedev AV, Grinkevich AV, Knyazeva SN. Multispectral systems of various uses [In Russian]. Photonics Russia 2015; 53(5): 68-81.
  3. Gorelik LI, Drogaitseva EV, Polesskiy AV, Sidorin AV, Solyakov VN, Trenin DYu. Dual-band thermal imaging system for spectral ranges 3-5 and 8-12 μm [In Russian]. Appl Phys 2011; 2: 92-96.
  4. Catanzaro BE, Dombrowski M, Hendrixson J, Hillenbrand E. Design of dual-band SWIR/MWIR and MWIR/LWIR imagers. Proc SPIE 2004; 5406: 829-835. DOI: 10.1117/12.543875.
  5. Jamieson TH. Athermalization of optical instruments from the optomechanical viewpoint. Proc SPIE 1992; 10265: 131-159. DOI: 10.1117/12.61105.
  6. Medvedev AV, Grinkevich AV, Knyazeva SN. Athermalization of objectives of sighting and observation complexes as the means of functioning support of the facilities of Armament of Armored Force Vehicles (AAFV). Photonics Russia 2016; 56(2): 94-109.
  7. Romanova GE, Pyś G. Research of aberration properties and passive athermalization of optical systems for infrared region. Pro SPIE 2015; 9626: 96260H. DOI: 10.1117/12.2191119.
  8. Tyagur VM, Kucherenko OK, Murav’ev AV. Passive optical athermalization of an IR three-lens achromat. J Opt Tech 2014; 81(4): 199-203. DOI: 10.1364/JOT.81.000199.
  9. Rogalski A. Infrared and terahertz detectors. 3rd ed. Boca Raton: CRC Press; 2019. ISBN: 978-1-138-19800-5.
  10. Goldberg AC, Kennerly SW, Little JW, Shafer TA, Mears CL, Schaake HF, Winn M, Taylor M, Uppal PN. Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays. Opt Eng 2003; 42(1): 30-46. DOI: 10.1117/1.1526106.
  11. Goldberg AC, Fischer T, Kennerly SW, Wang SCH, Sundaram M, Uppal PN, Winn ML, Milne GL, Stevens MA. Dual-band QWIP MWIR/LWIR focal plane array test results. Proc SPIE 2000; 4028: 276-287. DOI: 10.1117/12.391740.
  12. Tissot JL, Trouilleau C, Fieque B, Crastes A, Legras O. Uncooled microbolometer detector: recent developments at Ulis. Opto-Electron Rev 2006; 14(1): 25-32. DOI: 10.2478/s11772-006-0004-2.
  13. Keskin S, Akin T. The first fabricated dual-band uncooled infrared microbolometer detector with a tunable micro-mirror structure. Proc SPIE 2012; 8353: 83531C. DOI: 10.1117/12.964551.
  14. Smith EM, Panjwani D, Ginn J, Warren AP, Long C, Figuieredo P, Smith C, Nath J, Perlstein J, Walter N, Hirschmugl C, Peale RE, Shelton D. Dual band sensitivity enhancements of a VOx microbolometer array using a patterned gold black absorber. App Opt 2016; 55(8): 2071-2078. DOI: 10.1364/AO.55.002071.
  15. Greisukh GI, Ezhov EG, Antonov AI. Correction of chromatism of dual-infrared zoom lenses. Computer Optics 2020; 44(2): 177-182. DOI: 10.18287/2412-6179-CO-623.
  16. Greysukh GI, Danilov VA, Ezhov EG, Antonov AI, Usievich BA. Diffractive elements in optical systems of middle and double IR range. Photonics Russia 2020; 14(2): 160-169. DOI: 10.22184/1993-7296.FRos.2020.14.2.160.169.
  17. Xue C, Cui Q, Liu T, Yang L, Fei B. Optimal design of a multilayer diffractive optical element for dual wavebands. Opt Lett 2010; 35(24): 4157-4159. DOI: 10.1364/OL.35.004157.
  18. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA, Usievich BA. Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth. Opt Commun 2015; 338: 54-57. DOI: 10.1016/j.optcom.2014.10.037.
  19. Greĭsukh GI, Ezhov EG, Stepanov SA, Danilov VA, Usievich BA. Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure. J Opt Tech 2015; 82(5): 308-311. DOI: 10.1364/JOT.82.000308.
  20. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA, Usievich BA. Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures. Optics and Spectroscopy 2015; 118(6): 964-970. DOI: 10.1134/S0030400X15060090.
  21. Greisukh GI, Danilov VA, Stepanov SA, Antonov AI, Usievich BA. Spectral and angular dependences of the efficiency of three-layer relief-phase diffraction elements of the IR range. Optics and Spectroscopy 2018; 125(1): 60-64. DOI: 10.1134/S0030400X18070123.
  22. Mao S, Zhao J, He D. Analytical and comprehensive optimization design for multilayer diffractive optical elements in infrared dual band. Opt Commun 2020; 472: 125831. DOI: 10.1016/j.optcom.2020.125831.
  23. SemiConductor Devices. Source:  <https://www.scd.co.il/wp-content/uploads/2019/07/Bird640-17-ceramic_brochure_v3_PRINT.pdf>.
  24. Rahmlow Jr TD, Lazo-Wasem JE, Vizgaitis JN, Flanagan-Hyde J. Dual-band antireflection coatings on 3rd Gen lenses. Proc SPIE 2011; 8012: 80123D. DOI: 10.1117/12.888100.
  25. Hudson Jr RD. Infrared system engineering. New York: Wiley; 2006. ISBN: 978-0-470-09935-3.
  26. Zemax. Source: <http://www.zemax.com/pages/opticstudio/>.
  27. Schott. Source: <http://www.schott.com/en-gb/products/ir-materials-p1000261/downloads/>.
  28. Schaub M, Schwiegerling J, Fest EC, Symmons A, Shepard RH. Molded optics design and manufacture. Boca Raton: CRC Press, Taylor & Francis Group; 2011. ISBN: 978-1-4398-3258-5.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20