(46-6) 10 * << * >> * Русский * English * Содержание * Все выпуски
  
Comparative analysis of reflection symmetry detection methods in binary raster images with skeletal and contour representations
 O.S. Seredin 1, O.A. Kushnir 1, S.A. Fedotova 1
 1 Tula State University, 300012, Tula, Russia, Lenin Ave 92
 
 PDF, 1085 kB
  PDF, 1085 kB
DOI: 10.18287/2412-6179-CO-1115
Страницы: 921-928.
Язык статьи: English.
Аннотация:
The study is a comparative analysis of two fast reflection symmetry axis detection methods: an algorithm to refine the symmetry axis found with a chain of skeletal primitives and a boundary method based on the Fourier descriptor. We tested the algorithms with binary raster images of plant leaves (FLAVIA database). The symmetry axis detection quality and performance indicate that both methods can be used to solve applied problems. Neither method demonstrated any significant advantage in terms of accuracy or performance. It is advisable to integrate both methods for solving real-life problems.
Ключевые слова:
binary raster image, reflection symmetry, Jaccard measure, Fourier descriptor.
Благодарности
This study was supported by the Russian Science Foundation, Grant No. 22-21-00575, https://rscf.ru/project/22-21-00575/.
Цитирование:
Текст. Текст.
Citation:
Seredin OS, Kushnir OA, Fedotova SA. Comparative analysis of reflection symmetry detection methods in binary raster images with skeletal and contour representations. Computer Optics 2022; 46(6): 921-928. DOI: 10.18287/2412-6179-CO-1115.
References:
  - Kushnir O, Fedotova S,  Seredin O, Karkishchenko A. Reflection symmetry of shapes based on skeleton  primitive chains. In Book: Analysis of Images, Social Networks and Texts. AIST  2016. Communications in Computer and Information Science.  Cham: Springer, 2016: 293-304. DOI: 10.1007/978-3-319-52920-2_27.
- Kushnir OA, Seredin OS,  Fedotova SA. Algorithms for adjustment of symmetry axis found for 2D shapes by  the skeleton comparison method. Int Arch Photogramm Remote Sens Spat Inf Sci  2019; XLII-2/W12: 129-136. DOI:  10.5194/isprs-archives-XLII-2-W12-129-2019. 
 
- Mestetskiy L, Zhuravskaya A.  Method for assessing the symmetry of objects on digital binary images based on  Fourier descriptor. Int Arch Photogramm Remote Sens Spat Inf Sci 2019;  XLII-2/W12: 143-148. DOI: 10.5194/isprs-archives-XLII-2-W12-143-2019.
 
- Jaccard P. Étude comparative de  la distribution florale dans une portion des Alpes et des Jura. Bull Soc  Vaudoise Sci Nat 1901; 37: 547-579.
 
- Fedotova S, Seredin O, Kushnir  O. The Parallel Implementation of Algorithms for Finding the Reflection  Symmetry of the Binary Images. Int Arch Photogramm Remote Sens Spat Inf Sci  2017; XLII-2/W4: 179-184. DOI: 10.5194/isprs-archives-XLII-2-W4-179-2017.
 
- Van Otterloo PJ. A  contour-oriented approach to digital shape analysis. Technische Universiteit Delft; 1988.
 
- Sheynin S, Tuzikov A, Volgin D.  Computation of symmetry measures for polygonal shapes. In Book: CAIP '99:  Proceedings of the 8th international conference on computer analysis of images  and patterns. Berlin, Heidelberg: Springer-Verlag; 1999: 183-190.
 
- Yang X, et al. Symmetry of  shapes via self-similarity. In Book: Advances in visual computing. 4th  International Symposium, ISVC 2008, Las Vegas, NV,   USA, December 1-3, 2008,  Proceedings,     Part II. Berlin, Heidelberg: Springer-Verlag; 2008: 561-570. DOI: 10.1007/978-3-540-89646-3_55.
 
- Li Z, et al. Robust symmetry  detection for 2D shapes based on electrical charge distribution. J Inf Comput  Sci 2014; 11(9): 2887-2894. DOI:  10.12733/jics20103838.
 
- Niu D, et al. a novel approach  for detecting symmetries in two-dimensional shapes. J Inf Comput Sci 2015;  12(10): 3915-3925. DOI: 10.12733/jics20106437.
 
- Sun C, Si D. Fast reflectional  symmetry detection using orientation histograms. Real-Time Imaging 1999; 5(1):  63-74. DOI: 10.1006/rtim.1998.0135.
 
- Nguyen TP. Projection based  approach for reflection symmetry detection. 2019 IEEE Int Conf on Image  Processing (ICIP) 2019: 4235-4239. DOI:  10.1109/ICIP.2019.8803575.
 
- Wu SG, Bao FS, Xu EY, Wang YX,  Chang YF, Xiang QL. A leaf recognition algorithm for plant classification using  probabilistic neural network. 2007 IEEE Int Symp on Signal Processing and  Information Technology 2007: 11-16. DOI: 10.1109/ISSPIT.2007.4458016.       
      
- Sadovnichy  V, Tikhonravov A, Voevodin V, Opanasenko V. "Lomonosov":  Supercomputing at Moscow  state university. In Book: Vetter JS, ed. Contemporary high performance  computing: from petascale toward exascale. New York: Chapman and Hall/CRC Computational Science; 2013: 283-307.
      
      
      
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20