(47-1) 05 * << * >> * Русский * English * Содержание * Все выпуски

Расчет оптических элементов при протяженном источнике излучения
Е.В. Бызов 1,2, Л.Л. Досколович 1,2, С.В. Кравченко 1, М.А. Моисеев 1, Н.Л. Казанский 1,2

ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34

 PDF, 1032 kB

DOI: 10.18287/2412-6179-CO-1178

Страницы: 40-47.

Аннотация:
С использованием ранее разработанного оптимизационного метода [Byzov EV, Kravchenko SV, Moiseev MA, Bezus EA, Doskolovich LL. Optimization method for designing double-surface refractive optical elements for an extended light source. Opt Express 2020; 28(17): 24431-24443. DOI: 10.1364/OE.400609] для протяженного источника излучения рассчитан компактный преломляющий оптический элемент (отношение высоты элемента к размеру источника излучения – 1,55), обеспечивающий формирование равномерного распределения освещенности в смещенной прямоугольной области. Продемонстрировано применение оптимизационного метода в задаче расчета так называемых TIR-элементов, имеющих рабочую поверхность, на которой происходит полное внутреннее отражение лучей. Для протяженного источника излучения рассчитаны компактные TIR-элементы с выходной поверхностью свободной формы, формирующие равномерные распределения освещенности в прямоугольной области. Результаты работы перспективны для применения при решении широкого класса задач расчета компактных оптических элементов для светоизлучающих диодов.

Ключевые слова:
поверхность свободной формы, оптимизация, оптика для светодиодов, распределение освещенности, неизображающая оптика, оптический дизайн.

Благодарности
Работа выполнена при поддержке Российского научного фонда (проект № 18-19-00326).

Цитирование:
Бызов, Е.В. Расчет оптических элементов при протяженном источнике излучения / Е.В. Бызов, Л.Л. Досколович, С.В. Кравченко, М.А. Моисеев, Н.Л. Казанский // Компьютерная оптика. – 2023. – Т. 47, № 1. – С. 40-47. – DOI: 10.18287/2412-6179-CO-1178.

Citation:
Byzov EV, Doskolovich LL, Kravchenko SV, Moiseev MA, Kazanskiy NL. Design of optical elements for an extended light source. Computer Optics 2023; 47(1): 40-47. DOI: 10.18287/2412-6179-CO-1178.

References:

  1. Wu R, Feng Z, Zheng Z, Liang R, Benítez P, Miñano JC, Duerr F. Design of freeform illumination optics. Laser Photon Rev 2018; 12(7): 1700310.
  2. Wu R, Xu L, Liu P, Zhang Y, Zheng Z, Li H, Liu X. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampére equation. Opt Lett 2013; 38(2): 229-231.
  3. Mao X, Xu S, Hu X, Xie Y. Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping. Appl Opt 2017; 56(22): 6324-6331.
  4. Wu R, Chang S, Zheng Z, Zhao L, Liu X. Formulating the design of two freeform lens surfaces for point-like light sources. Opt Lett 2018; 43(7): 1619-1622.
  5. Brix K, Hafizogullari Y, Platen A. Designing illumination lenses and mirrors by the numerical solution of Monge–Ampère equations. J Opt Soc Am A 2015; 32(11): 2227-2236.
  6. Yadav NK, ten ThijeBoonkkamp JHM, IJzerman WL. Computation of double freeform optical surfaces using a Monge–Ampère solver: Application to beam shaping. Opt Commun 2019; 439: 251-259.
  7. Schwartzburg Y, Testuz R, Tagliasacchi A, Pauly M. High-contrast computational caustic design. ACM Trans Graph 2014; 33(4): 74.
  8. Oliker V. Controlling light with freeform multifocal lens designed with supporting quadric method(SQM). Opt Express 2017; 25(4): A58-A72.
  9. Doskolovich LL, Bykov DA, Andreev ES, Bezus EA, Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Opt Express 2018; 26(19): 24602-24613. DOI: 10.1364/OE.26.024602.
  10. Doskolovich LL, Bykov DA, Mingazov AA, Bezus EA. Optimal mass transportation and linear assignment problems in the design of freeform refractive optical elements generating far-field irradiance distributions. Opt Express 2019; 27(9): 13083-13097. DOI: 10.1364/OE.27.013083.
  11. Bykov DA, Doskolovich LL, Byzov EV, Bezus EA, Kazanskiy NL. Supporting quadric method for designing refractive optical elements generating prescribed irradiance distributions and wavefronts. Opt Express 2021; 29(17): 26304-26318. DOI: 10.1364/OE.432770.
  12. Doskolovich LL, Byzov EV, Mingazov AA, Karapetian GJ, Smorodin VI, Kazanskiy NL, Bykov DA, Bezus EA. Supporting quadric method for designing freeform mirrors that generate prescribed near-field irradiance distributions. Photonics 2022; 9(2): 118. DOI: 10.3390/photonics9020118.
  13. Luo Y, Feng Z, Han Y, Li H. Design of compact and smooth free-form optical system with uniform illuminance for LED source. Opt Express 2010; 18(9): 9055-9063.
  14. Li Z, Yu S, Lin L, Tang Y, Ding X, Yuan W, Yu B. Energy feedback freeform lenses for uniform illumination of extended light source LEDs. Appl Opt 2016; 55: 10375-10381.
  15. Liu Z, Liu P, Yu F. Parametric optimization method for the design of high-efficiency free-form illumination system with a LED source. Chin Opt Lett 2012; 10: 112201-112201.
  16. Fournier F, Rolland J. Optimization of freeform lightpipes for light-emitting-diode projectors. Appl Opt 2008; 47: 957-966.
  17. Zhao S, Wang K, Chen F, Qin Z, Liu S. Integral freeform illumination lens design of LED based pico-projector. Appl Opt 2013; 52: 2985-2993.
  18. Moiseev MA, Doskolovich LL. Design of refractive spline surface for generating required irradiance distribution with large angular dimension. J Mod Opt 2010; 57(7): 536-544. DOI: 10.1080/09500341003764069.
  19. Wu R, Huang CY, Zhu X, Cheng H-N, Liang R. Direct three-dimensional design of compact and ultra-efficient freeform lenses for extended light sources. Optica 2016; 3: 840-843.
  20. Wu R, Hua H, Benítez P, Miñano JC. Direct design of aspherical lenses for extended non-Lambertian sources in two-dimensional geometry. Opt Lett 2015; 40: 3037-3040.
  21. Hu S, Du K, Mei T, Wan L, Zhu N. Ultra-compact LED lens with double freeform surfaces for uniform illumination. Opt Express 2015; 23: 20350-20355.
  22. Li X, Ge P, Wang H. Prescribed intensity in 3D rotational geometry for extended sources by using a conversion function in 2D design. Appl Opt 2017; 56: 1795-1798.
  23. Li X, Ge P, Wang H. An efficient design method for LED surface sources in three-dimensional rotational geometry using projected angle difference, Light Res Technol 2019; 51(3): 457-464.
  24. Sorgato S, Chaves J, Thienpont H, Duerr F. Design of illumination optics with extended sources based on wavefront tailoring. Optica 2019; 6: 966-971.
  25. Byzov EV, Kravchenko SV, Moiseev MA, Bezus EA, Doskolovich LL. Optimization method for designing double-surface refractive optical elements for an extended light source. Opt Express 2020; 28(17): 24431-24443. DOI: 10.1364/OE.400609.
  26. Byzov EV, Kravchenko SV, Moiseev MA, Doskolovich LL. Optimization method for designing optical elements with an extended light source. Computer Optics 2020; 44(5): 712-720. DOI: 10.18287/2412-6179-CO-762.
  27. Wei S, Zhu Z, Li W, Ma D. Compact freeform illumination optics design by deblurring the response of extended sources. Opt Lett 2021; 46: 2770-2773.
  28. Moiseev MA, Doskolovich LL. Design of TIR optics generating the prescribed irradiance distribution in the circle region. J Opt Soc Am A 2012; 29(9): 1758-1763. DOI: 10.1364/JOSAA.29.001758.
  29. Tsai, C.Y. Free-form surface design method for a collimator TIR lens. J Opt Soc Am A 2016; 33(4): 785-792. DOI:10.1364/JOSAA.33.000785.
  30. Zhao Z, Zhang H, Liu S, Wang X. Effective freeform TIR lens designed for LEDs with high angular color uniformity. Appl Opt 2018; 57: 4216-4221.
  31. Andreeva KV, Kravchenko SV, Moiseev MA, Doskolovich LL. Designing freeform TIR optical elements using supporting quadric method. Opt Express 2017; 25(19): 23465-23476. DOI: 10.1364/OE.25.023465.
  32. Ma D, Feng Z, Liang R. Freeform illumination lens design using composite ray mapping. Appl Opt 2015; 54: 498-503.
  33. Shikin EV, Plis LI. Curves and surfaces on a computer screen. Spline guide for users [In Russian]. Moscow: "DIALOG-MIFI" Publisher; 1996.
  34. Bicubic interpolation. Source: <https://en.wikipedia.org/wiki/Bicubic_interpolation>.
  35. TracePro – software for design and analysis of illumination and optical systems. Source: <https://www.lambdares.com/tracepro/>.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20