(47-2) 05 * << * >> * Русский * English * Содержание * Все выпуски

Концепция фотонного пространственного переключателя на основе внеосевой зонной пластины: экспериментальное подтверждение в миллиметровом диапазоне
А.Г. Паулиш 1,2,3, О.В. Минин 4, И.В. Минин 1,4

Филиал Института физики полупроводников им. А. В. Ржанова СО РАН "КТИПМ",
630090, Россия, г. Новосибирск, проспект Академика Лаврентьева, д. 2/1;
Новосибирский государственный технический университет,
630073, Россия, г. Новосибирск, проспект Карла Маркса, д. 20;
Новосибирский государственный университет,
630073, Россия, г. Новосибирск, ул. Пирогова, д. 2;
Национальный исследовательский Томский политехнический университет,
634050, Россия, г. Томск, Ленина, д. 30

 PDF, 1793 kB

DOI: 10.18287/2412-6179-CO-1210

Страницы: 230-234.

Аннотация:
В статье приводятся результаты экспериментальной проверки концепции ранее предложенного [ Гейнц, Ю.Э. Концепция миниатюрного фотонного пространственного переключателя на основе внеосевой зонной пластины / Ю.Э. Гейнц, О.В. Минин, И.В. Минин // Квантовая электроника. – 2021. – Т. 51, № 8. – С. 727-729. – DOI: https://doi.org/10.1070/QEL17600 ] полностью оптического селективного по длине волны многоканального коммутатора на основе внеосевой зонной пластины Вуда в миллиметровом диапазоне длин волн без применения микромеханических устройств или нелинейных материалов. Рассмотрен лабораторный прототип такого устройства, и обсуждаются его основные параметры. На основе проведенных экспериментов показано, что оптическая изоляция коммутируемых каналов для переключателя на базе внеосевой зонной пластины может достигать 15 дБ при разности частот 25 ГГц в диапазоне частот 93 – 136 ГГц.

Ключевые слова:
оптический коммутатор, фотонный крючок, внеосевая зонная пластина Вуда.

Благодарности
Работа выполнена в рамках программы развития ТПУ, частично поддержана грантом РФФИ (No. 21-57-10001).

Цитирование:
Паулиш, А.Г. Концепция фотонного пространственного переключателя на основе внеосевой зонной пластины: экспериментальное подтверждение в миллиметровом диапазоне / А.Г. Паулиш, О.В. Минин, И.В. Минин // Компьютерная оптика. – 2023. – Т. 47, № 2. – С. 230-234. – DOI: 10.18287/2412-6179-CO-1210.

Citation:
Paulish AG, Minin OV, Minin IV. Concept of a photon spatial switch based on an off-axis zone plate: experimental confirmation in the millimeter waves range. Computer Optics 2023; 47(2): 230-234. DOI: 10.18287/2412-6179-CO-1210.

References:

  1. El-Bawab TS. Optical Switching. Boston, MA: Springer; 2006.
  2. Geints YuE, Minin OV, Minin IV. Concept of a miniature photonic spatial switch based on off-axis zone plate. Quantum Electron 2021; 51(8): 727-729. DOI: 10.1070/QEL17600.
  3. Geints YuE, Minin OV, Minin IV. The concept of a miniature all-optical space switch based on the photonic hook effect. Computer Optics 2021; 45(6): 848-852. DOI: 10.18287/2412-6179-CO-926.
  4. Dholakia K, Bruce GD. Optical hooks. Nat Photon 2019; 13: 229-230. DOI: 10.1038/s41566-019-0403-9.
  5. Christodoulides DN. Foreword. In Book: Minin OV, Minin IV. The photonic hook. Cham: Springer; 2021: vii-viii. DOI: 10.1007/978-3-030-66945-4.
  6. Seok TJ, Luo J, Huang Z, Kwon K, Henriksson J, Jacobs J, Ochikubo L, Muller RS, Wu MC. Silicon photonic wavelength cross-connect with integrated MEMS switching. APL Photon 2019; 4: 100803. DOI: 10.1063/1.5120063.
  7. Zhang C, Zhang M, Xie Y, Shi Y, Kumar R, Panepucci R, Dai D. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photonics Res 2020; 8(7): 1171-1176. DOI: 10.1364/PRJ.393513.
  8. Emara MK, Gupta S. Integrated multiport leaky-wave antenna multiplexer/demultiplexer system for millimeter-wave communication. IEEE Trans Antennas Propag 2021; 69(9): 5244-5256. DOI: 10.1109/TAP.2021.3060138.
  9. Tomura T, Hirokawa J, Ali M, Carpintero G. Millimeter-wave multiplexed wideband wireless link using rectangular-coordinate orthogonal multiplexing (ROM) antennas. J Lightw Technol 2021; 39(24): 7821-7830. DOI: 10.1109/JLT.2021.3093445.
  10. Hui X, Zheng S, Chen Y, et al. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas. Sci Rep 2015; 5: 10148. DOI: 10.1038/srep10148.
  11. Dailleux E, Frigon J-F, Hannachi C, Tatu SO. Millimeter wave spatial multiplexing: Feasibility and performance of a short range 2×2 link. 2015 European Microwave Conf (EuMC) 2015: 199-202. DOI: 10.1109/EuMC.2015.7345734.
  12. Minin IV, Minin OV. System of microwave radiovision of three-dimensional objects in real time. Proc SPIE 2000; 4129: 616-619. DOI: 10.1117/12.390666.
  13. Browning C, Ouyang X, Dass D, Talli G, Townsend P. Orthogonal chirp-division multiplexing for performance enhanced optical/millimeter-wave 5G/6G communications. 2021 Optical Fiber Communications Conference and Exhibition (OFC) 2021: W1J.3. Source: <https://ieeexplore.ieee.org/abstract/document/9489885>.
  14. Ding Y, Fusco V, Shitvov A. (2017). Beamspace multiplexing for wireless millimeter-wave backhaul link. 2017 11th European Conference on Antennas and Propagation (EUCAP) 2017: 912-916. DOI: 10.23919/EuCAP.2017.7928340.
  15. Amphawan A, Chaudhary S. Free-space optical mode division multiplexing for switching between millimeter-wave picocells. Proc SPIE 2015; 9524: 95242H. DOI: 10.1117/12.2189694.
  16. Wang H, Piestun R. Azimuthal multiplexing 3D diffractive optics. Sci Rep 2020; 10: 6438.
  17. Ruffato G, Massari M, Romanato F. Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization. Sci Rep 2016; 6: 24760.
  18. Doskolovich LL, Bezus EA, Kazanskiy NL. Multifocal spectral diffractive lens. Computer Optics 2018; 42(2): 219-226. DOI: 10.18287/2412-6179-2018-42-2-219-226.
  19. Khonina SN, Volotovsky SG, Ustinov AV, Kharitonov SI. Analysis of focusing light by a harmonic diffractive lens with regard for the refractive index dispersion. Computer Optics 2017; 41(3): 338-347. DOI: 10.18287/2412-6179-2017-41-3-338-347.
  20. Blank V, Skidanov R, Doskolovich L, Kazanskiy N. Spectral diffractive lenses for measuring a modified red edge simple ratio index and a water band index. Sensors 2021; 21: 7694. DOI: 10.3390/s21227694.
  21. Guo YJ, Barton SK. Offset Fresnel zone plate antennas. Int J Satell Commun 1994; 12(4): 381-385. DOI: 10.1002/sat.4600120405.
  22. Minin IV, Minin OV, Golodnikov DO. Simple Free-Space Method for Measurement of Dielectric Constant by Means of Diffractive Optics with New Capabilities. Proc 8th Int Conf on Actual Problems of Electronic Instrument Engineering 2006: 13-18. DOI: 10.1109/APEIE.2006.4292375.
  23. Monkevich JM, Le Sage GP. Design and fabrication of a custom-dielectric fresnel multi-zone plate lens antenna using additive manufacturing techniques. IEEE Access 2019; 7: 61452-61460. DOI: 10.1109/ACCESS.2019.2916077.
  24. Furlan WD, Ferrando V, Monsoriu JA, Zagrajek P, Czerwińska E, Szustakowski M. 3D printed diffractive terahertz lenses. Opt Lett 2016; 41(8): 1748-1751. DOI: 10.1364/OL.41.001748.
  25. Pourahmadazar J, Sahebghalam S, Abazari Aghdam S, Nouri M. A millimeter-wave Fresnel zone plate lens design using perforated 3D printing material. 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) 2018: 1-3. DOI: 10.1109/IMWS-AMP.2018.8457170.
  26. Pourahmadazar J, Denidni T. Towards millimeter-wavelength: Transmission-mode Fresnel zone plate lens antennas using plastic material porosity control in homogeneous medium. Sci Rep 2018; 8: 5300. DOI: 10.1038/s41598-018-23179-8.
  27. Zhang S. Design and fabrication of 3D-printed planar Fresnel zone plate lens. Electron Lett 2016; 52(10): 833-835. DOI: 10.1049/el.2016.0736.
  28. Poyanco JM, Pizarro F, Rajo-Iglesias E. Cost-effective wideband dielectric planar lens antenna for millimeter wave applications. Sci Rep 2022; 12: 4204. DOI: 10.1038/s41598-022-07911-z.
  29. Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation process in some polymers. Polymers 1967; 8: 161-210. DOI: 10.1016/0032-3861(67)90021-3.
  30. Minin IV, Minin OV, Geints YE. Localized EM and photon jets from non-spherical and non-symmetric dielectric mesoscale objects: Brief review. Annalen der Physik (Berlin) 2015; 527(7-8): 491-497. DOI: 10.1002/andp.201500132.
  31. Paulish AG, Gusachenko AV, Morozov AO, Dorozhkin KV, Suslyaev VI, Golyashov VA, Minin OV, Minin IV. Characterization of tetraaminediphenyl-based pyroelectric detector from visible to millimeter wave ranges. Opt Eng 2020; 59(6): 061612. DOI: 10.1117/1.OE.59.6.061612.
  32. Paulish AG, Gusachenko AV, Morozov AO, Golyashov VA, Dorozhkin KV, Suslyaev VI. Sensitivity of the tetraaminodiphenyl based pyroelectric sensor from visible to sub-THz range. Sensor Rev 2020; 40(3): 291-296. DOI: 10.1108/SR-03-2020-0047.
  33. Fast Detectors (ZBD-F). Source: <https://vadiodes.com/en/zbd>.
  34. Khope A, Samanta A, Xiao X, Yoo B, Bowers J. Review of integrated photonic elastic WDM switches for data centers. arXiv Preview. 2021. Source: <https://arxiv.org/abs/2105.14934>.
  35. Vinogradov AP, Aivazyan AV. Scaling theory for homogenization of the Maxwell equations. Phys Rev E 1999; 60: 987.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20