(47-5) 08 * << * >> * Русский * English * Содержание * Все выпуски

Исследование методом FDTD поляризационных преобразований, осуществляемых преломляющим биконическим аксиконом
П.А. Хорин 1,2, А.М. Алгубили 1,3, С.А. Дегтярев 1,2, С.К. Сергунин 1, С.В. Карпеев 1,2, С.Н. Хонина 1,2

Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34;
ИСОИ РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
Университет г. Куфа, 540011, Ирак, г. Куфа, п/я № 21

 PDF, 2851 kB

DOI: 10.18287/2412-6179-CO-1326

Страницы: 742-750.

Аннотация:
В данной работе проведено исследование на основе метода FDTD поляризационных преобразований, осуществляемых рефракционным биконическим аксиконом. Данный элемент имеет две рабочие конические поверхности, при взаимодействии с которыми осуществляется преобразование оптического пучка с круговой поляризацией в азимутально поляризованный пучок. На внутренней поверхности элемента происходит преобразование поляризации за счет отражения и преломления лучей под углом Брюстера, а внешняя поверхность обеспечивает коллимацию преобразованного пучка. В качестве критериев успешного поляризационного преобразования рассмотрены распределения компонент вектора электрического поля на различных расстояниях от оптического элемента. На основе численного моделирования показана работоспособность предложенного подхода для биконического аксикона, выполненного из стекла с показателем преломления n = 1,4958, и Гауссова пучка с круговой поляризацией с длиной волны λ = 1,5 мкм. Показано сохранение работоспособности предложенного элемента при изменении показателя преломления материала элемента и изменении длины волны падающего излучения в достаточно широких диапазонах (1,5 ≤  1,7; 1 мкм ≤ λ ≤ 1,5 мкм).

Ключевые слова:
биконический аксикон, поляризационные преобразования, FDTD-метод, дисперсионная устойчивость.

Благодарности
Работа выполнена в рамках Государственного задания ФНИЦ «Кристаллография и фотоника» РАН. Опубликовано за счет средств программы стратегического академического лидерства «Приоритет 2030».

Цитирование:
Хорин, П.А. Исследование методом FDTD поляризационных преобразований, осуществляемых преломляющим биконическим аксиконом / П.А. Хорин, А.М. Алгубили, С.А. Дегтярев, С.К. Сергунин, С.В. Карпеев, С.Н. Хонина // Компьютерная оптика. – 2023. – Т. 47, № 5. – С. 742-750. – DOI: 10.18287/2412-6179-CO-1326.

Citation:
Khorin PA, Algubili AM, Degtyarev SA, Sergunin SK, Karpeev SV, Khonina SN. Investigation of polarization transformations performed with a refractive bi-conical axicon using the FDTD method. Computer Optics 2023; 47(5): 742-750. DOI: 10.18287/2412-6179-CO-1326.

References:

  1. Goldstein DH. Polarized light. Boca Raton, FL: CRC Press; 2003.
  2. Freund I. Polarization flowers. Opt Commun 2001; 199: 47-63. DOI: 10.1016/S0030-4018(01)01533-4.
  3. Maurer C, Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Tailoring of arbitrary optical vector beams. New J Phys 2007; 9: 78. DOI: 10.1088/1367-2630/9/3/078.
  4. Wang XL, Li Y, Chen J, Guo CS, Ding J, Wang HT. A new type of vector fields with hybrid states of polarization. Opt Express 2010; 18: 10786-10795. DOI: 10.1364/OE.18.010786.
  5. Khonina, SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Appl Opt 2010; 49(10): 1734-1738. DOI: 10.1364/AO.49.001734.
  6. Zhu W, She W. Generation of tunable three-dimensional polarization in 4Pi focusing system. Opt Express 2013; 21: 17265-17274. DOI: 10.1364/OE.21.017265.
  7. Rong ZY, Han YJ, Wang SZ, Guo CS. Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators. Opt Express 2014; 22: 1636-1644. DOI: 10.1364/OE.22.001636.
  8. Liu Z, Liu Y, Ke Y, Liu Y, Shu W, Luo H, Wen S. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photon Res 2017; 5: 15-21. DOI: 10.1364/PRJ.5.000015.
  9. Bauer T, Banzer P, Bouchard F, Orlov S, Marrucci L, Karimi E, Leuchs G. Multi-twist polarization ribbon topologies in highly-confined optical fields. New J Phys 2019; 21: 053020. DOI: 10.1088/1367-2630/ab171b.
  10. Khonina SN, Ustinov AV, Porfirev AP. Vector Lissajous laser beams. Opt Lett 2020; 45(15): 4112-4115. DOI: 10.1364/OL.398209.
  11. Zhong RY, Zhu ZH, Wu HJ, Rosales-Guzmán C, Song SW, Shi BS. Gouy phase-mediated propagation variations and revivals of transverse structure in vectorially structured light. Phys Rev A 2021; 103: 053520. DOI: 10.1103/PhysRevA.103.053520.
  12. Khonina SN, Porfirev AP. Harnessing of inhomogeneously polarized Hermite–Gaussian vector beams to manage the 3D spin angular momentum density distribution. Nanophotonics 2022; 11(4): 697-712. DOI: 10.1515/nanoph-2021-0418.
  13. Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 2015; 40: 4887-4890. DOI: 10.1364/OL.40.004887.
  14. Akent'ev AS, Sadovnikov MA, Sokolov AL, Simonov GV. Polarization analysis of the beam-steering device of quantum optical systems. Opt Spectrosc 2017; 122: 1008-1014. DOI: 10.1134/S0030400X17060029.
  15. Ndagano B, Nape I, Cox MA, Rosales-Guzman C, Forbes A. Creation and detection of vector vortex modes for classical and quantum communication. J Lightwave Technol 2018; 36: 292-301. DOI:10.1109/JLT.2017.2766760.
  16. Karpeev SV, Podlipnov VV, Khonina SN, Ivliev NA, Ganchevskay SV. Free-space transmission and detection of variously polarized near-IR beams using standard communication systems with embedded singular phase structures. Sensors 2022; 22(3): 890-907. DOI: 10.3390/s22030890.
  17. Oron D, Tal E, Silberberg Y. Depth-resolved multiphoton polarization microscopy by third-harmonic generation. Opt Lett 2003; 28: 2315-2317. DOI: 10.1364/OL.28.002315.
  18. Serrels K, Ramsay E, Warburton R, Reid D. Nanoscale optical microscopy in the vectorial focusing regime. Nat Photonics 2008; 2: 311-314. DOI: 10.1038/nphoton.2008.29.
  19. Kenny F, Lara D, Rodríguez-Herrera O, Dainty C. Complete polarization and phase control for focus-shaping in high-NA microscopy. Opt Express 2012; 20: 14015-14029. DOI: 10.1364/OE.20.014015.
  20. Skelton S, Sergides M, Saija R, Iati M, Marago O, Jones P. Trapping volume control in optical tweezers using cylindrical vector beams. Opt Lett 2013; 38: 28-30. DOI: 10.1364/OL.38.000028.
  21. Otte E, Denz C. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl Phys Rev 2020; 7: 041308. DOI: 10.1063/5.0013276.
  22. Yang Y, Ren Y, Chen M, Arita Y, Rosales-Guzmán C. Optical trapping with structured light: A review. Adv Photonics 2021; 3: 034001. DOI: 10.1117/1.AP.3.3.034001.
  23. Gorodetski Y, Niv A, Kleiner V, Hasman E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys Rev Lett 2008; 101: 043903. DOI: 10.1103/PhysRevLett.101.043903.
  24. Beresna M, Gecevičius M, Kazansky PG, Gertus T. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett 2011; 98: 201101. DOI: 10.1063/1.3590716.
  25. Mller T, Schumann C, Kraegeloh A. STED Microscopy and its applications: New insights into cellular processes on the nanoscale. Chemphyschem 2012; 13: 1986-2000. DOI: 10.1002/cphc.201100986.
  26. Khonina SN, Golub I. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. J Opt Soc Am A 2012; 29(10): 2242-2246. DOI: 10.1364/JOSAA.29.002242.
  27. Varin C, Payeur S, Marceau V, et al. Directelectron acceleration with radially polarized laser beams. Appl Sci 2013; 3: 70-93. DOI: 10.3390/app3010070.
  28. Ni J, Wang C, Zhang C, Hu Y, Yang L, Lao Z, Chu J. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl 2017; 6: e17011. DOI: 10.1038/lsa.2017.11.
  29. Syubaev SA, Zhizhchenko AY, Pavlov DV, Gurbatov SO, Pustovalov EV, Porfirev AP, Khonina SN, Kulinich SA, Rayappan JBB, Kudryashov SI, Kuchmizhak AA. Plasmonic nanolenses produced by cylindrical vector beam printing for sensing applications. Sci Rep 2019; 9: 19750. DOI: 10.1038/s41598-019-56077-8.
  30. Porfirev A, Khonina S, Meshalkin A, Ivliev N, Achimova E, Abashkin V, Prisacar A, Podlipnov V. Two-step maskless fabrication of compound fork-shaped gratings in nanomultilayer structures based on chalcogenide glasses. Opt Lett 2021; 46(13): 3037-3040. DOI: 10.1364/OL.427335.
  31. Masuda K, Nakano S, Barada D, Kumakura M, Miyamoto K, Omatsu T. Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam. Opt Express 2017; 25: 12499-12507. DOI: 10.1364/OE.25.012499.
  32. Khonina SN, Ustinov AV, Volotovskiy SG, Ivliev NA, Podlipnov VV. Influence of optical forces induced by paraxial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymer films. Appl Opt 2020; 59(29): 9185-9194. DOI: 10.1364/AO.398620.
  33. Kharintsev SS, Fishman AI, Kazarian SG, Salakhov MK. Polarization of near-field light induced with a plasmonic nanoantenna. Phys Rev B 2015; 92: 115113. DOI: 10.1103/PhysRevB.92.115113.
  34. Masuda K, Shinozaki R, Shiraishi A, Ichijo M, Yamane K, Miyamoto K, Omatsu T. Picosecond optical vortex-induced chiral surface relief in an azo-polymer film. J Nanophoton 2020; 14: 016012. DOI: 10.1117/1.JNP.14.016012.
  35. Ferrer-Garcia MF, Alvandi Y, Zhang Y, Karimi E. Theoretical analysis on spatially structured beam induced mass transport in azo-polymer films. Opt Express 2020; 28: 19954-19965. DOI: 10.1364/OE.395054.
  36. Tidwell SC, Ford DH, Kimura WD. Generating radially polarized beams interferometrically. Appl Opt 1990; 29: 2234-2239. DOI: 10.1364/AO.29.002234.
  37. Passilly N, de Saint DR, Aït-Ameur K, Treussart F, Hierle R, Roch JF. Simple interferometric technique for generation of a radially polarized light beam. J Opt Soc Am A 2005; 22: 984-991. DOI: 10.1364/JOSAA.22.000984.
  38. Liu S, Li P, Peng T, Zhao J. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt Express 2012: 20: 21715-21721. DOI: 10.1364/OE.20.021715.
  39. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of diffractive optical elements. J Opt Soc Am A 2011; 28(10): 2115-2123. DOI: 10.1364/JOSAA.28.002115.
  40. Sokolov AL, Murashkin VV. Diffraction polarization optical elements with radial symmetry. Opt Spectrosc 2011; 111: 859-865. DOI: 10.1134/S0030400X11130212.
  41. Porfirev AP, Ustinov AV, Khonina SN. Polarization conversion when focusing cylindrically polarized vortex beams. Sci Rep 2016; 6: 6. DOI: 10.1038/s41598-016-0015-2.
  42. Moreno I, Davis JA, Hernandez TM, Cottrell DM, Sand D. Complete polarization control of light from a liquid crystal spatial light modulator. Opt Express 2012; 20: 364-376. DOI: 10.1364/OE.20.000364.
  43. Karpeev SV, Podlipnov VV, Algubili AM. An interference scheme for generating inhomogeneously polarized laser radiation using a spatial light modulator. Computer Optics 2020; 44(2): 214-218. DOI: 10.18287/2412-6179-CO-698.
  44. Bomzon Z, Biener G, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt Lett 2002; 27: 285-287. DOI: 10.1364/OL.27.000285.
  45. Lerman GM, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Opt Lett 2008; 33: 2782-2784. DOI: 10.1364/OL.33.002782.
  46. Rubin NA, Zaidi A, Juhl M, Li RP, Devlin RC, Leosson K, Capasso F. Polarization state generation and measurement with a single metasurface. Opt Express 2018; 26: 21455-21478. DOI: 10.1364/OE.26.021455.
  47. Khonina SN, Degtyarev SA, Ustinov AV, Porfirev AP. Metalenses for the generation of vector Lissajous beams with a complex Poynting vector density. Opt Express 2021; 29(12): 18651-18662. DOI: 10.1364/OE.428453.
  48. Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S, Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Appl Opt 2007; 46: 3304-3310. DOI: 10.1364/AO.46.003304.
  49. Karpeev SV, Podlipnov VV, Khonina SN, Paranin VD, Tukmakov KN. Anisotropic diffractive optical element for generating hybrid-polarized beams. Opt Eng 2019; 58(8): 082402. DOI: 10.1117/1.OE.58.8.082402.
  50. Loussert C, Brasselet E. Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media. Opt Lett 2010; 35: 7-9. DOI: 10.1364/OL.35.000007.
  51. Fadeyeva TA, Shvedov VG, Izdebskaya YV, Volyar AV, Kivshar YS. Spatially engineered polarization states and optical vortices in uniaxial crystals. Opt Express 2010; 18: 10848-10863. DOI: 10.1364/OE.18.010848.
  52. Khonina SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals. Phys Lett A 2017; 381(30): 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
  53. Khonina SN, Porfirev AP, Kazanskiy NL. Variable transformation of singular cylindrical vector beams using anisotropic crystals. Sci Rep 2020; 10: 5590. DOI: 10.1038/s41598-020-62546-2.
  54. Tovar AA. Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams. J Opt Soc Am A 1998; 15: 2705-2711. DOI: 10.1364/JOSAA.15.002705.
  55. Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt Lett 2005; 30: 3063-3065. DOI:10.1364/OL.30.003063.
  56. Radwell N, Hawley RD, Gotte JB, Franke-Arnold S. Achromatic vector vortex beams from a glass cone. Nat Commun 2016; 7: 10654. DOI: 10.1038/ncomms10564.
  57. Khonina S, Degtyarev S, Savelyev D, Ustinov A. Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Opt Express 2017; 25(16): 19052-19064. DOI: 10.1364/OE.25.019052.
  58. Savelyev DA, Degtyarev SA. Investigation of vortex evanescent fields in the near zone of fiber taper and sub-wavelength diffractive axicon. Proc SPIE 2018; 10774: 107740J. DOI: 10.1117/12.2318740.
  59. Savelyev DA. Diffraction of the Gaussian beam on layered lens and similar a conical and diffraction axicons. CEUR Workshop Proc 2016; 1638: 117-124. DOI: 10.18287/1613-0073-2016-1638-117-124.
  60. Zhang Y, Zeng A, Wang Y, Huang HA. method for measuring the base angle of axicon lens based on chromatic dispersion. Opt Commun 2015; 346: 69-73. DOI: 10.1016/j.optcom.2015.02.021.
  61. Wei Z, Yuan Q, Ma X, Hu J, Zeng A, Huang H. Measurement of base angle of an axicon lens based on autocollimation optical path. Opt Commun 2019; 434: 23-27. DOI: 10.1016/j.optcom.2018.10.034.
  62. Skidanov RV, Morozov AA. Diffractive optical elements for forming radially polarized light, based on the use stack of Stoletov. Computer Optics 2014; 38(4): 614-618. DOI: 10.18287/0134-2452-2014-38-4-614-619.
  63. Karpeev SV, Paranin VD, Khonina SN. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer. J Opt 2017; 19: 055701. DOI: 10.1088/2040-8986/aa640c.
  64. Degtyarev SA, Karpeev SV, Ivliev NA, Podlipnov VV, Khonina SN. Refractive bi-conic axicon (volcone) for polarization conversion of monochromatic radiation. Photonics 2022; 9(6): 421. DOI: 10.3390/photonics9060421.
  65. Gubaev MS, Savelyev DA, Strelkov YS, Degtyarev SA. Polarization transformation with refractive axicon. 2021 Photonics & Electromagnetics Research Symposium (PIERS) 2021; 867-876. DOI: 10.1109/PIERS53385.2021.9694866.
  66. Gubaev MS, Degtyarev SA, Strelkov YS, Volotovsky SG, Ivliev NA, Khonina SN. Vectorial beam generation with a conical refractive surface. Computer Optics 2021; 45(6): 828-838. DOI: 10.18287/2412-6179-CO-1036.
  67. Khonina SN, Tukmakov KN, Degtyarev SA, Reshetnikov AS, Pavelyev VS, Choporova YY. Design, fabrication and investigation of a subwavelength axicon for terahertz beam polarization transforming Computer Optics 2019; 43(5): 756-764. DOI: 10.18287/2412-6179-2019-43-5-756-764.
  68. Pavelyev VS, Degtyarev SA, Tukmakov KN, Knyazev BA, Choporova YY. Silicon subwavelength axicons for terahertz beam polarization transformation. J Phys: Conf Ser 2021; 1745(1): 012022. DOI: 10.1088/1742-6596/1745/1/012022.
  69. Khonina SN. Vortex beams with high-order cylindrical polarization: Features of focal distributions. Appl Phys B 2019; 125: 100. DOI:10.1007/s00340-019-7212-1
  70. Kharitonov SI, Khonina SN. Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide. Computer Optics 2018; 42(2): 197-211. DOI: 10.18287/2412-6179-2018-42-2-197-211.
  71. Helseth LE. Roles of polarization, phase and amplitude in solid immersion lens system. Opt Commun 2001; 191: 161-172. DOI: 10.1016/S0030-4018(01)01150-6.
  72. Khonina SN, Golub I. Optimization of focusing of linearly polarized light. Opt Lett 2011; 36(3): 352-354. DOI: 10.1364/OL.36.000352.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20