(47-6) 05 * << * >> * Русский * English * Содержание * Все выпуски

Design and simulation of a multichannel sensing system for liquid refractometry based on integrated photonics
A.G. Zakoyan 1, G.S. Voronkov 1, V.S. Lyubopytov 1, A.K. Sultanov 1, E.P. Grakhova 1, R.V. Kutluyarov 1

Ufa University of Science and Technology,
450076, Ufa, Russia, Z. Validi str., 32

 PDF, 5165 kB

DOI: 10.18287/2412-6179-CO-1268

Страницы: 884-894.

Язык статьи: English.

Аннотация:
The paper proposes a new architecture for the photonic laboratory-on-a-chip sensing systems, where multiple sensors based on microring resonators (MRR) are fed by a MRR with low quality factor, working as a spectrum shaper. This architecture enables simultaneous intensity scanning of at least four MRR-based sensors on the silicon-on-insulator platform. We evaluated numerically the system’s sensitivity for various schemes of connecting the sensors and the spectrum shaper. The sensor’s sensitivity was 110 nm/RIU. The sensing system configuration largely determines its sensitivity, which reaches 1980 dB/RIU. The considered architecture may be useful for implementing fully integrated optical lab-on-a-chip structures, as well as distributed multichannel sensing systems.

Ключевые слова:
lab-on-a-chip, sensing system, integrated photonics, silicon-on-insulator, ring resonators.

Благодарности
The research was supported by the Ministry of Science and Higher Education of the Russian Federation: state assignment for USATU, agreement No 075-03-2021-014 dated 29.09.2021 (FEUE-2021-0013).

Citation:
Zakoyan AG, Voronkov GS, Lyubopytov VS, Sultanov AK, Grakhova EP, Kutluyarov RV. Design and simulation of a multichannel sensing system for liquid refractometry based on integrated photonics. Computer Optics 2023; 47(6): 884-894. DOI: 10.18287/2412-6179-CO-1268.

References:

  1. Li H, An Z, Mao Q, Zuo S, Zhu W, Zhang S, Zhang C, Li E, Garcia JDP. SOI waveguide bragg grating photonic sensor for human body temperature measurement based on photonic integrated interrogator, Nanomaterials 2021; 12(1): 29. DOI: 10.3390/nano12010029.
  2. Vogelbacher F, Kothe T, Muellner P, Melnik E, Sagmeister M, Kraft J, Hainberger R. Waveguide Mach-Zehnder biosensor with laser diode pumped integrated single-mode silicon nitride organic hybrid solid-state laser. Biosens Bioelectron 2022; 197: 113816. DOI: 10.1016/j.bios.2021.113816.
  3. Sun X, Dai D, Thylén L, Wosinski L. High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide. Opt Express 2015; 23(20): 25688-25699. DOI: 10.1364/OE.23.025688.
  4. Wu S, Guo Y, Wang W, Zhou J, Zhang Q. Label-free biosensing using a microring resonator integrated with poly-(dimethylsiloxane) microfluidic channels. Rev Sci Instrum 2019; 90: 035004. DOI: 10.1063/1.5074134.
  5. Guo C, Wang C, Ma T, Zhang L, Wang F. Integrated refractive index sensor based on an AlN-PSiO2 hybrid plasmonic microdisk resonator. Appl Opt 2022; 61(17): 4980-4985. DOI: 10.1364/AO.458340.
  6. Butt MA, Khonina SN, Kazanskiy NL. A highly sensitive design of subwavelength grating double-slot waveguide microring resonator. Laser Phys Lett 2020; 17(7): 076201. DOI: 10.1088/1612-202X/ab8faa.
  7. Butt MA, Kazanskiy NL, Khonina SN. Modal characteristics of refractive index engineered hybrid plasmonic waveguide. IEEE Sens J 2020; 20(17): 9779-9786. DOI: 10.1109/JSEN.2020.2991215.
  8. Matsuura S, Yamasaku N, Nishijima Y, Okazaki S, Arakawa T. Characteristics of highly sensitive hydrogen sensor based on Pt-WO3/Si microring resonator. Sensors 2019; 20(1): 96. DOI: 10.3390/s20010096.
  9. Wang J, Zhang X, Wei Z, Qiu H, Chen Y, Geng Y, Du Y, Cheng Z, Li X. Design of a dual-mode graphene-on-microring resonator for optical gas sensing. IEEE Access 2021; 9: 56479-56485. DOI: 10.1109/ACCESS.2021.3072134.
  10. Ma X, Chen K, Wu J, Wang L. Low-cost and highly sensitive liquid refractive index sensor based on polymer horizontal slot waveguide. Photonic Sens 2020; 10(1): 7-15. DOI: 10.1007/s13320-019-0560-y.
  11. Voronkov G, Zakoyan A, Ivanov V, Iraev D, Stepanov I, Yuldashev R, Grakhova E, Lyubopytov V, Morozov O, Kutluyarov R. Design and modeling of a fully integrated microring-based photonic sensing system for liquid refractometry. Sensors 2022; 22(23): 9553. DOI: 10.3390/s22239553.
  12. Tozzetti L, Bontempi F, Giacobbe A, Pasquale FD, Faralli S. Fast FBG interrogator on chip based on silicon on insulator ring resonator add/drop filters. J Lightw Technol 2022; 40(15): 5328-5336. DOI: 10.1109/JLT.2022.3174770.
  13. Yang F, Zhang W, Jiang Y, Tao J, He Z. Highly sensitive integrated photonic sensor and interrogator using cascaded silicon microring resonators. J Lightw Technol 2022; 40(9): 3055-3061. DOI: 10.1109/JLT.2022.3145501.
  14. Yang F, Zhang W, Zhao S, Liu Q, Tao J, He Z. Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array. Opt Express 2019; 27(5): 6037-6046. DOI: 10.1364/OE.27.006037.
  15. Liu Y, Li Y, Li M, He J-J. High-sensitivity and wide-range optical sensor based on three cascaded ring resonators. Opt Express 2017; 25(2): 972-978. DOI: 10.1364/OE.25.000972.
  16. Hoste J-W, Soetaert P, Bienstman P. Improving the detection limit of conformational analysis by utilizing a dual polarization Vernier cascade. Opt Express 2016; 24(1): 67-81. DOI: 10.1364/OE.24.000067.
  17. Weng S, Yuan P, Lu L, Zhang D, Zhu L. SOI-based arrayed waveguide grating with extended dynamic range for fiber Bragg grating interrogator. Opt Fiber Technol 2022; 68: 102815. DOI: 10.1016/j.yofte.2021.102815.
  18. Li K, Yuan P, Lu L, Dong M, Zhu L. PLC-based arrayed waveguide grating design for fiber Bragg grating interrogation system. Nanomaterials 2022; 12(17): 2938. DOI: 10.3390/nano12172938.
  19. Dai Y, Liu Y, Leng J, Deng G, Asundi A. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring. Opt Lasers Eng 2009; 47(10): 1028-1033. DOI: 10.1016/j.optlaseng.2009.05.012.
  20. Hu C, Bai W. High-speed interrogation for large-scale fiber Bragg grating sensing. Sensors 2018; 18(3): 665. DOI: 10.3390/s18020665.
  21. Gotten M, Lochmann S, Ahrens A, Lindner E, Vlekken J, Van Roosbroeck J. A CDM-WDM interrogation scheme for massive serial FBG sensor networks. IEEE Sens J 2022; 22(12): 11290-11296. DOI: 10.1109/JSEN.2021.3070446.
  22. Rabus DG. Ring resonators: Theory and modeling. In Book: Rabus DG. Integrated ring resonators. Berlin, Heidelberg: Springer; 2007: 3-40. DOI: 10.1007/978-3-540-68788-7_2.
  23. Xia H, Wang C, Blais S, Yao J. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion. J Lightw Technol 2010; 28(3): 254-261. DOI: 10.1109/JLT.2009.2037722.
  24. Palik ED, Ghosh G. Handbook of optical constants of solids. San Diego: Academic Press; 1998.
  25. Lu Z, Jhoja J, Klein J, Wang X, Liu A, Flueckiger J, Pond J, Chrostowski L. Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability. Opt Express 2017; 25(9): 9712-9733. DOI: 10.1364/OE.25.009712.
  26. Chrostowski L, Hochberg M. Silicon photonics design: From devices to systems. 1st ed. Cambridge: Cambridge University Press; 2015. ISBN: 978-1-107-08545-9.
  27. Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser Photon Rev 2012; 6(1): 47-73.
  28. Milvich J, Kohler D, Freude W, Koos C. Integrated phase-sensitive photonic sensors: a system design tutorial. Adv Opt Photon 2021; 13(3): 584-642. DOI: 10.1364/AOP.413399.
  29. Wang X, Flueckiger J, Schmidt S, Grist S, Fard ST, Kirk J, Doerfler M, Cheung KC, Ratner DM, Chrostowski L. A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide. J Biophotonics 2013; 6(10): 821-828. DOI: 10.1002/jbio.201300012.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20