(48-1) 09 * << * >> * Русский * English * Содержание * Все выпуски

Numerical approach to compound quantum repeater scheme with coherent states
I.O. Vorontsova 1,2, R.K. Goncharov 1,2, D.V. Tupyakov 1, F.D. Kiselev 1,2, V.I. Egorov 1,2

ITMO University, Leading Research Center "National Center of Quantum Internet",
199034, Saint Petersburg, Russia, Birzhevaya Line 16;
SMARTS-Quanttelecom LLC,
199178, Saint Petersburg, Russia, 6th Vasilyevskogo Ostrova Line 59

 PDF, 1413 kB

DOI: 10.18287/2412-6179-CO-1322

Страницы: 81-85.

Язык статьи: English.

Аннотация:
A numerical model of a quantum repeater operating with Schrödinger cat states is constructed. The model describes the performance of such a system in the presence of decoherence effects, namely, noise in the quantum channel and the efficiency of the photon-number-resolving detector. In the framework of the numerical model, a theoretical analysis of the system functioning is carried out for the elementary link by calculating its performance characteristics. Namely, we calculate photodetector click probabilities and fidelity for various sets of decoherence parameters. These estimates are necessary in the context of further experimental research at the junction with other branches of quantum communications, so that to use the entanglement distribution when it comes to operating quantum teleportation and quantum key distribution protocols based on entanglement. The model will be developed further as a versatile drag-and-drop software simulating the full-fledged entanglement swapping protocol operation.

Ключевые слова:
quantum repeater, entanglement swapping, decoherence, quantum key distribution.

Благодарности
The work was done by Leading Research Center "National Center for Quantum Internet" of ITMO University supported by the Russian Science Foundation (project No. 24-21-00484).

Citation:
Vorontsova I, Goncharov R, Tupyakov D, Kiselev F, Egorov V. Numerical approach to compound quantum repeater scheme with coherent states. Computer Optics 2024; 48(1): 81-85. DOI: 10.18287/2412-6179-CO-1322.

References:

  1. Duan L-M, Lukin MD, Cirac JI, Zoller P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 2001; 414: 413-418. DOI: 10.1038/35106500.
  2. Sangouard N, Simon C, de Riedmatten H, Gisin N. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys 2011; 83(1): 33-34. DOI: 10.1103/RevModPhys.83.33.
  3. Azuma K, Economou SE, Elkouss D, Hilaire P, Jiang L. Lo H-K, Tzitrin I. Quantum repeaters: From quantum networks to the quantum internet. arXiv Preprint. 2023. Source: <https://arxiv.org/abs/2212.10820>. DOI: 10.48550/ARXIV.2212.10820.
  4. Goncharov R, Kiselev A, Veselkova N, Ali R, Kiselev F. Discrimination and decoherence of schrödinger cat states in lossy quantum channels. Nanosyst: Phys Chem Math 2021; 12(6): 697-702. DOI: 10.17586/2220-8054-2021-12-6-697-702.
  5. Dodonov VV, Malkin IA, Man’ko VI. Even and odd coherent states and excitations of a singular oscillator. Physica 1974; 72(3): 597-615. DOI: 10.1016/0031-8914(74)90215-8.
  6. Tóth G, Apellaniz I. Quantum metrology from a quantum information science perspective. J Phys A: Math Theor 2014; 47: 424006. DOI: 10.1088/1751-8113/47/42/424006.
  7. Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology. Nat Photon 2011; 5: 222-229. DOI: 10.1038/nphoton.2011.35.
  8. Van Meter R, Devitt SJ. The path to scalable distributed quantum computing. Computer 2016; 49(9): 31-42. DOI: 10.1109/MC.2016.291.
  9. Seshadreesan KP, Dowling JP, Agarwal GS. Teleportation of schrodinger-cat states using entangled-photon-holes-embedded two-mode squeezed-vacuum light. In Book: Delyett P Jr, Gauthier D, eds. Frontiers in optics 2013. OSA Technical Digest (online). Optica Publishing Group; 2013: LW1G.1. DOI: 10.1364/LS.2013.LW1G.1.
  10. Broadbent CJ, Marshall K, Weedbrook C, Howell JC. Device-independent quantum key distribution with generalized two-mode schrödinger cat states. Phys Rev A 2015; 92: 052318. DOI: 10.1103/PhysRevA.92.052318.
  11. Kelley PL, Kleiner WH. Theory of electromagnetic field measurement and photoelectron counting. Phys Rev 1964; 136: A316-A334. DOI: 10.1103/PhysRev.136.A316.
  12. Vogel W, Welsch D-G. Quantum optics. 3rd ed. Berlin: Wiley-VCH; 2006.
  13. Manzano D. A short introduction to the Lindblad master equation. AIP Advances 2020; 10(2): 025106. DOI: 10.1063/1.5115323.
  14. Johansson J, Nation P, Nori F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput Phys Commun 2013; 184(4): 1234-1240. DOI: 10.1016/j.cpc.2012.11.019.
  15. Goncharov R, Kiselev AD, Kiselev F, Moiseev ES, Samsonov E, Moiseev SA, Egorov V. Quantum repeater via entangled phase modulated multimode coherent states. arXiv Preprint. 2022. Source: <https://arxiv.org/abs/2211.03597>. DOI: 10.48550/arXiv.2211.03597.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20